SIMD学习笔记2:高斯卷积计算优化

2024-02-07 08:28

本文主要是介绍SIMD学习笔记2:高斯卷积计算优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://github.com/gredx/simd-parallel-conv
https://zhuanlan.zhihu.com/p/419806079
https://www.cnblogs.com/Imageshop/p/9069650.html
https://zhuanlan.zhihu.com/p/308004749
https://zhuanlan.zhihu.com/p/83694328

SSE图像算法优化系列十八:三次卷积插值的进一步SSE优化。
基于CPU SIMD和winograd的卷积计算加速技术_
如何学习SIMD(单指令多数据流)并应用?
SSE图像算法优化系列九:灵活运用SIMD指令16倍提升Sobel边缘检测的速度(4000*3000的24位图像时间由480ms降低到30ms)。
SSE图像算法优化系列二:高斯模糊算法的全面优化过程分享(一)。
数字图像处理之高斯滤波加速优化

Opencv findcontours函数原理,以及python numpy实现
AVX256加速矩阵乘法

microsoft/ DirectXMath github SIMD

我要实现循环卷积sse,暂时没有找到比较好的写法:

优化前

void gaussianConvolution(Matrix<double>& srcIamge, Matrix<double>& desImage, Matrix<double>& kernel)
{int kernelSize = kernel.numCols();//卷积填充int startOffset = -1 * int(kernelSize / 2);for (int i = 0; i < srcIamge.numRows(); i++){for (int j = 0; j < srcIamge.numCols(); j++){double blurredPixel = 0.0;for (int kx = 0; kx < kernelSize; kx++){for (int ky = 0; ky < kernelSize; ky++){int x = i + startOffset + kx, y = j + startOffset + ky;GetPixelWrapAround(srcIamge, x, y);blurredPixel += kernel.get(kx, ky)* srcIamge.get(x, y);}}desImage.set(i, j, blurredPixel);}}
}void  GetPixelWrapAround(const Matrix<double>& image, int& x, int& y)
{int w = image.numRows();int h = image.numCols();x = (x % w + w) % w;y = (y % h + h) % h;
}

sse优化后:

void greenNoise::gaussianConvolutionSSE(Matrix<double>& srcImage, Matrix<double>& desImage, Matrix<double>& kernel)
{int kernelSize = kernel.numCols();int width = srcImage.numRows();int height = srcImage.numCols();int startOffset = -1 * static_cast<int>(kernelSize / 2);double temp[4];for (int i = 0; i < width; i++){for (int j = 0; j < height; j++){double blurredPixel = 0.0;for (int kx = 0; kx < kernelSize; kx++){int x = (i + startOffset + kx + width) % width;for (int ky = 0; ky < kernelSize-3; ky+=4){//int y = (j + startOffset + ky + height) % height;int y0 = j + startOffset + ky + height;int y1 = (y0 + 1)% height;int y2 = (y0 + 2) % height;int y3 = (y0 + 3) % height;y0 = y0 % height;__m256d srcValues = _mm256_set_pd(srcImage.get(x, y0), srcImage.get(x, y1), srcImage.get(x, y2), srcImage.get(x, y3));__m256d kernelValues = _mm256_set_pd(kernel.get(kx, ky), kernel.get(kx, ky+1), kernel.get(kx, ky+2), kernel.get(kx, ky+3));__m256d resultVec = _mm256_mul_pd(srcValues, kernelValues);_mm256_storeu_pd(temp, resultVec);blurredPixel += temp[0]+ temp[1] + temp[2] + temp[3] ;}// Process the remaining elements (if any) without SSEfor (int ky = kernelSize - kernelSize % 4; ky < kernelSize; ++ky){int y = (j + startOffset + ky + height) % height;blurredPixel += kernel.get(kx, ky) * srcImage.get(x, y);}}desImage.set(i, j, blurredPixel);}}
}

加入多线程:

void greenNoise::parallelGaussianConvolutionSSE(Matrix<double>& srcImage, Matrix<double>& desImage, Matrix<double>& kernel)
{int kernelSize = kernel.numCols();int width = srcImage.numRows();int height = srcImage.numCols();int startOffset = -1 * static_cast<int>(kernelSize / 2);std::vector<std::thread> threads;//std::mutex mutex; // Mutex to control access to the result matrixconst int numThreads = std::thread::hardware_concurrency(); // Number of available threadsconst int rowsPerThread = (width + numThreads - 1) / numThreads; // Rows per threadfor (int t = 0; t < numThreads; ++t){threads.emplace_back([&srcImage, &desImage, &kernel, t, rowsPerThread,kernelSize, width, height, startOffset](){for (int i = t* rowsPerThread; i < std::min(width, (t +1)* rowsPerThread); i++){for (int j = 0; j < height; j++){double temp[4];double blurredPixel = 0.0;for (int kx = 0; kx < kernelSize; kx++){int x = (i + startOffset + kx + width) % width;for (int ky = 0; ky < kernelSize - 3; ky += 4){//int y = (j + startOffset + ky + height) % height;int y0 = j + startOffset + ky + height;int y1 = (y0 + 1) % height;int y2 = (y0 + 2) % height;int y3 = (y0 + 3) % height;y0 = y0 % height;__m256d srcValues = _mm256_set_pd(srcImage.get(x, y0), srcImage.get(x, y1), srcImage.get(x, y2), srcImage.get(x, y3));__m256d kernelValues = _mm256_set_pd(kernel.get(kx, ky), kernel.get(kx, ky + 1), kernel.get(kx, ky + 2), kernel.get(kx, ky + 3));__m256d resultVec = _mm256_mul_pd(srcValues, kernelValues);_mm256_storeu_pd(temp, resultVec);blurredPixel += temp[0] + temp[1] + temp[2] + temp[3];}// Process the remaining elements (if any) without SSEfor (int ky = kernelSize - kernelSize % 4; ky < kernelSize; ++ky){int y = (j + startOffset + ky + height) % height;blurredPixel += kernel.get(kx, ky) * srcImage.get(x, y);}}desImage.set(i, j, blurredPixel);}}});}for (auto& thread : threads){thread.join();}}

这篇关于SIMD学习笔记2:高斯卷积计算优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/687112

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML