A64指令集架构之PCS过程调用标准

2024-02-07 03:28

本文主要是介绍A64指令集架构之PCS过程调用标准,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Arm架构对通用寄存器的使用几乎没有限制。简而言之,整数寄存器和浮点寄存器都是通用寄存器。然而,如果你希望你的代码与他人编写的代码互动,或者与编译器生成的代码互动,那么你需要就寄存器的使用达成一致的规则。对于Arm架构,这些规则被称为过程调用标准(Procedure Call Standard),或者PCS。

PCS规定了:

  1. 用于将参数传递给函数的寄存器。
  2. 用于将值返回给调用函数(称为调用者caller)的寄存器。
  3. 被调用的函数(称为被调用者callee)可以破坏哪些寄存器。
  4. 被调用者不能破坏哪些寄存器。

考虑一个从main()调用的函数foo():

fcd40760ade94ceb9a1791a746e730b8.png

PCS规定第一个参数传递给X0,第二个参数传递给X1,以此类推,直到X7。任何额外的参数都传递到栈stack上。我们的函数foo()接受两个参数:b和c。因此,b将位于W0,c将位于W1。

为什么是W而不是X?因为这些参数是32位类型,因此我们只需要一个W寄存器。

【注意】:在C++中,X0用于传递指向被调用函数的隐式this指针。

接下来,PCS定义了哪些寄存器可以被破坏,哪些寄存器不能被破坏。如果一个寄存器可以被破坏,那么被调用的函数可以在不需要恢复的情况下覆盖它,正如PCS寄存器规则表所示:

e7dcbfc56a95412ea8a4155a6b833cfa.png

92674025036746d38ca905eadfbd26ad.png

例如,函数foo()可以使用寄存器X0到X15而无需保留它们的值。然而,如果foo()想要使用X19到X28,它必须先保存它们到栈,然后在返回之前从栈中恢复它们。

在PCS中,一些寄存器具有特殊的意义:

  • XR - 这是一个间接结果寄存器。如果foo()返回一个结构体,那么结构体的内存将由调用者分配,例如在前面的例子中是main()。XR是指向由调用者分配用于返回结构体的内存的指针。
  • X16和X17(IP0和IP1) - 这些寄存器是过程内调用可破坏寄存器。这些寄存器可以在调用函数和到达函数的第一条指令之间被破坏。链接器使用这些寄存器在调用者和被调用者之间插入veneers。veneers是一小段代码,最常见的例子是用于分支范围扩展。A64中的分支指令是有限的范围。如果目标超出了该范围,那么链接器需要生成一个veneer来扩展分支的范围。
  • FP - 帧指针。
  • LR - X30是用于函数调用的链接寄存器(LR)。

对于X16和X17,在《ARM安全架构——为复杂软件提供保护》一文中的BTI分支目标识别中会被特殊使用。

BTI如何实现?

        PSTATE包含一个字段,BTYPE,记录分支类型。在执行间接分支时,间接分支的类型记录在PSTATE.BTYPE中。以下列表显示了不同分支指令的BTYPE取值:

BTYPE=11:BR、BRAA、BRAB、BRAAZ、BRABZ,使用除X16或X17之外的任何寄存器
BTYPE=10:BLR、BLRAA、BLRAB、BLRAAZ、BLRABZ
BTYPE=01:BR、BRAA、BRAB、BRAAZ、BRABZ,使用X16或X17
        执行任何其他类型的指令,包括直接分支,都会将BTYPE设置为b00。

        为什么要存储两个位?一个简单的实现可以记录间接分支是否正在进行中。然而,记录间接分支的类型进一步限制了查找小工具的可能性。BTI指令的语法包括一个参数,指定它可以被哪些类型的间接分支定位:

39c3450ce71d44b9822f0dd882352526.png

        当BTYPE!=00时,处理器会检查目标指令是否是一个着陆点。如果它不是一个着陆点,或者如果它是错误类型的间接分支,将生成异常。

X16和X17

        架构之所以区分使用X16或X17的间接分支和不使用的间接分支,是因为X16和X17在Arm使用的过程调用标准中具有特殊的意义。它们被称为过程内调用破坏寄存器,或称为IP0或IP1。它们可以被静态链接器用于插入分支范围扩展的veneers,或者被动态链接器用于处理跳转表。

        这对我们而言是相关的,因为这意味着一个函数可能直接通过BL或BLR从调用者进入,也可能通过链接器生成的代码间接进入,使用X16或X17。因此,函数入口的着陆点需要能够接受这两种情况。

【注意】: 我们之前介绍了ALU标志,用于条件分支和条件选择。PCS规定ALU标志在函数调用之间无需保存。

对于浮点寄存器,有一套类似的规则:

f4d8815248924ea084e0ec7852e9245f.png

 

这篇关于A64指令集架构之PCS过程调用标准的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/686388

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

linux下shell脚本启动jar包实现过程

《linux下shell脚本启动jar包实现过程》确保APP_NAME和LOG_FILE位于目录内,首次启动前需手动创建log文件夹,否则报错,此为个人经验,供参考,欢迎支持脚本之家... 目录linux下shell脚本启动jar包样例1样例2总结linux下shell脚本启动jar包样例1#!/bin

java内存泄漏排查过程及解决

《java内存泄漏排查过程及解决》公司某服务内存持续增长,疑似内存泄漏,未触发OOM,排查方法包括检查JVM配置、分析GC执行状态、导出堆内存快照并用IDEAProfiler工具定位大对象及代码... 目录内存泄漏内存问题排查1.查看JVM内存配置2.分析gc是否正常执行3.导出 dump 各种工具分析4.

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap