u-boot.lds

2024-02-07 03:18
文章标签 boot lds

本文主要是介绍u-boot.lds,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

u-boot.lds文件各个字段注解如下:

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")

/*指定输出可执行文件是elf格式,32ARM指令,小端*/
OUTPUT_ARCH(arm)

/*指定输出可执行文件的平台为ARM*/
ENTRY(_start)

/*指定输出可执行文件的起始代码段为_start*/
SECTIONS
{

/*指定可执行image文件的全局入口点,通常这个地址都放在ROM(flash)0x0位置。必须使编译器知道这个地址,通常都是修改此处来完成*/
 . = 0x00000000;/*;0x0位置开始*/
 . = ALIGN(4);/*代码以4字节对齐*/
 .text :
 {
  cpu/arm920t/start.(.text) 

    /*代码的第一个代码部分*/  
  *(.text)

  /*下面依次为各个text段函数*/
 }
 . = ALIGN(4);

/*代码以4字节对齐*/
 .rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }

 /*指定只读数据段*/
 . = ALIGN(4);

/*代码以4字节对齐*/
 .data : { *(.data) }
 . = ALIGN(4);

/*代码以4字节对齐*/
 .got : { *(.got) }

/*指定got, got段是uboot自定义的一个段非标准段*/
 . = .;
 __u_boot_cmd_start = .;

/*__u_boot_cmd_start赋值为当前位置即起始位置*/
 .u_boot_cmd : { *(.u_boot_cmd) }

 /*指定u_boot_cmd, uboot把所有的uboot命令放在该段.*/
 __u_boot_cmd_end = .;

 /*__u_boot_cmd_end赋值为当前位置,即结束位置*/
 . = ALIGN(4);

/*代码以4字节对齐*/
 __bss_start = .;

 /*__bss_start赋值为当前位置,bss段的开始位置*/
 .bss (NOLOAD) : { *(.bss) . = ALIGN(4); }

/*指定bss,告诉加载器不要加载这个段*/
 __bss_end = .;

/*_end赋值为当前位置,bss段的结束位置*/
}

 

看完上面的解析思路本来应该是很清晰的,于是乎编译u-boot,查看一下System.map,

 

30100000 T _start

30100020 t _undefined_instruction

30100024 t _software_interrupt

30100028 t _prefetch_abort

3010002c t _data_abort

30100030 t _not_used

30100034 t _irq

30100038 t _fiq

 

发现 _start 的链接地址不是u-boot.lds中.text 的当前地址0x00000000,而是0x30100000,这就产生很多疑问了:

(1)     为什么u-boot.lds指定的 .text 的首地址不起作用?

(2)     0x30100000是什么地址,由谁指定.text的首地址是0x30100000的呢?

(3)     假如有其他动作改变了 .text 的首地址,那么该动作跟u-boot.lds的优先级又是怎么决定的呢?

其实这三个问题都在Makefile的LDFLAGS 变量和u-boot.lds 中找到答案。我们不妨试着修改一下u-boot.lds,把u-boot.lds修改成如下(红色字体部分为修改过部分):

OUTPUT_FORMAT("elf32-littlearm", "elf32-littlearm", "elf32-littlearm")

/*指定输出可执行文件是elf格式,32ARM指令,小端*/
OUTPUT_ARCH(arm)

/*指定输出可执行文件的平台为ARM*/
ENTRY(_start)

/*指定输出可执行文件的起始代码段为_start*/
SECTIONS
{

/*指定可执行image文件的全局入口点,通常这个地址都放在ROM(flash)0x0位置。必须使编译器知道这个地址,通常都是修改此处来完成*/
 . = 0x30000000;/*;0x0位置开始*/
 . = ALIGN(4);/*代码以4字节对齐*/

.rodata : { *(SORT_BY_ALIGNMENT(SORT_BY_NAME(.rodata*))) }
 . = ALIGN(4);

/*代码以4字节对齐*/

 .text :
 {
  cpu/arm920t/start.o (.text) 

    /*代码的第一个代码部分*/  
  *(.text)

  /*下面依次为各个text段函数*/
 } 

 /*指定只读数据段*/
 . = ALIGN(4);

/*代码以4字节对齐*/
 .data : { *(.data) }
 . = ALIGN(4);

/*代码以4字节对齐*/
 .got : { *(.got) }

/*指定got, got段是uboot自定义的一个段非标准段*/
 . = .;
 __u_boot_cmd_start = .;

/*__u_boot_cmd_start赋值为当前位置即起始位置*/
 .u_boot_cmd : { *(.u_boot_cmd) }

 /*指定u_boot_cmd, uboot把所有的uboot命令放在该段.*/
 __u_boot_cmd_end = .;

 /*__u_boot_cmd_end赋值为当前位置,即结束位置*/
 . = ALIGN(4);

/*代码以4字节对齐*/
 __bss_start = .;

 /*__bss_start赋值为当前位置,bss段的开始位置*/
 .bss (NOLOAD) : { *(.bss) . = ALIGN(4); }

/*指定bss,告诉加载器不要加载这个段*/
 __bss_end = .;

/*_end赋值为当前位置,bss段的结束位置*/
}

 

上面对u-boot.lds主要做了两点修改

(1)     把0x00000000 改成 0x30000000。

(2)     把 .text 和 .rodata 存放的地址调换了位置。

重新编译 u-boot, 查看System.map

30000000 R version_string

30000028 r C.27.2365

.

.

.

30100000 T _start

30100020 t _undefined_instruction

.

.

.

从上面的System.map部分内容可以看出:

(1)     u-boot.lds设定的地址(0x00000000或0x30000000)是有效的。

(2)     .text的地址仍然是30100000

 

跟着我们查看Makefile中的LDFLAGS变量,发现一条指令

LDFLAGS += -Ttext $(TEXT_BASE)  其中TEXT_BASE 是在u-boot根目录的board文件夹的对应的开发板名字的子目录下的config.mk文件中定义的

TEXT_BASE = 0x30100000

看到这里我们应该明白为什么_start,也就是.text的首地址总是等于0x30100000了,在连接的时候ld命令会把参数-Ttext指定的地址赋给.text,所以.text在u-boot.lds中的默认地址(当前地址)不起作用了。

这篇关于u-boot.lds的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/686362

相关文章

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

如何在Spring Boot项目中集成MQTT协议

《如何在SpringBoot项目中集成MQTT协议》本文介绍在SpringBoot中集成MQTT的步骤,包括安装Broker、添加EclipsePaho依赖、配置连接参数、实现消息发布订阅、测试接口... 目录1. 准备工作2. 引入依赖3. 配置MQTT连接4. 创建MQTT配置类5. 实现消息发布与订阅

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添

在Spring Boot中实现HTTPS加密通信及常见问题排查

《在SpringBoot中实现HTTPS加密通信及常见问题排查》HTTPS是HTTP的安全版本,通过SSL/TLS协议为通讯提供加密、身份验证和数据完整性保护,下面通过本文给大家介绍在SpringB... 目录一、HTTPS核心原理1.加密流程概述2.加密技术组合二、证书体系详解1、证书类型对比2. 证书获

Spring Boot中的YML配置列表及应用小结

《SpringBoot中的YML配置列表及应用小结》在SpringBoot中使用YAML进行列表的配置不仅简洁明了,还能提高代码的可读性和可维护性,:本文主要介绍SpringBoot中的YML配... 目录YAML列表的基础语法在Spring Boot中的应用从YAML读取列表列表中的复杂对象其他注意事项总