SVR-支持向量机的回归应用

2024-02-06 19:58
文章标签 应用 支持 回归 向量 svr

本文主要是介绍SVR-支持向量机的回归应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

支持向量机的回归应用

本文的思想延续自 基于核方法的支持向量机的思想 ,感兴趣的同学可以移步。
本文的公式推导核部分图片截取自PRML,在此表示感谢!

  • 综述
  • 目标函数确定
  • 增加松弛变量
  • 求解
  • 总结

综述

    在线性回归模型中我们最小一个正则化的误差函数来求解参数得到一个拟合的回归方程。

12n=1N{yntn}2λ2w2 1 2 ∑ n = 1 N { y n − t n } 2 − λ 2 ‖ w ‖ 2


原本想按照PRML书上的思路阐述这个问题,后来觉得有点不通。觉得这种阐述方式很容易给人带来误解,下面陈述一下自己想法吧:
    最终的目的是想要拟合一条曲线出来,根据现有的svm的知识如何推导呢?很容易想到支持向量所在的两条软间隔线,如果我们将这两天软间隔线收缩到一定范围内不就近似是一条曲线了吗?那好让我们就按着这个思路往下走。

目标函数确定

    首先定义一个 ε ε − 不 敏 感 的 函 数 也就是当 y(x)t(n)<ε y ( x ) − t ( n ) < ε 认为 y(x)=t(n) y ( x ) = t ( n ) 。通过这种方式我们就定义出了一个管道结构。

这里写图片描述

    与前面的支持向量机一样我们现在需要,增加两个松弛变量 ξ0ξ^0 ξ ⩾ 0 和 ξ ^ ⩾ 0 ,其中 ξ>0 ξ > 0 的点对应于 tn>y(xn)+ε t n > y ( x n ) + ε ; ξ^>0 ξ ^ > 0 的点对应于 tn>y(xn)ε t n > y ( x n ) − ε 的数据点。观察上述图片发现点位于管道内的条件是:
y(xn)+ε>tn>y(xn)ε y ( x n ) + ε > t n > y ( x n ) − ε
通过引入松弛变量,使得数据点可以出现在管道之外,与SVM相同这样使得模型在训练的时抵抗异常点的干扰更强。于是我们得出数据点应该满足的条件变为:
y(xn)+ε+ξ>tn>y(xn)εξ y ( x n ) + ε + ξ > t n > y ( x n ) − ε − ξ

    类比支持向量机的 折页损失函数,这里的损失函数就可以写成:
Cn=1N(ξn+ξ^n)+12w2 C ∑ n = 1 N ( ξ n + ξ ^ n ) + 1 2 ‖ w ‖ 2

求解拉格朗日方程

这里写图片描述

对除拉格朗日乘子外的变量求导:
这里写图片描述

消去变量得到对偶形式:
这里写图片描述

与SVM相同的方法我们得到对偶形式预测函数:
这里写图片描述

求解这个方程时,我们观察一下KKT条件看能得到什么有用的知识:
这里写图片描述

当然这里的两个乘子同样要满足盒限制:
这里写图片描述

观察变形后的KKT条件:

这里写图片描述

这里写图片描述

总结

在SVR确定了怎么处理回归后,其它的推导过程与SVm相同。

这篇关于SVR-支持向量机的回归应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/685382

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)

《k8s上运行的mysql、mariadb数据库的备份记录(支持x86和arm两种架构)》本文记录在K8s上运行的MySQL/MariaDB备份方案,通过工具容器执行mysqldump,结合定时任务实... 目录前言一、获取需要备份的数据库的信息二、备份步骤1.准备工作(X86)1.准备工作(arm)2.手

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

华为鸿蒙HarmonyOS 5.1官宣7月开启升级! 首批支持名单公布

《华为鸿蒙HarmonyOS5.1官宣7月开启升级!首批支持名单公布》在刚刚结束的华为Pura80系列及全场景新品发布会上,除了众多新品的发布,还有一个消息也点燃了所有鸿蒙用户的期待,那就是Ha... 在今日的华为 Pura 80 系列及全场景新品发布会上,华为宣布鸿蒙 HarmonyOS 5.1 将于 7

Python使用Tkinter打造一个完整的桌面应用

《Python使用Tkinter打造一个完整的桌面应用》在Python生态中,Tkinter就像一把瑞士军刀,它没有花哨的特效,却能快速搭建出实用的图形界面,作为Python自带的标准库,无需安装即可... 目录一、界面搭建:像搭积木一样组合控件二、菜单系统:给应用装上“控制中枢”三、事件驱动:让界面“活”

如何确定哪些软件是Mac系统自带的? Mac系统内置应用查看技巧

《如何确定哪些软件是Mac系统自带的?Mac系统内置应用查看技巧》如何确定哪些软件是Mac系统自带的?mac系统中有很多自带的应用,想要看看哪些是系统自带,该怎么查看呢?下面我们就来看看Mac系统内... 在MAC电脑上,可以使用以下方法来确定哪些软件是系统自带的:1.应用程序文件夹打开应用程序文件夹

Python Flask 库及应用场景

《PythonFlask库及应用场景》Flask是Python生态中​轻量级且高度灵活的Web开发框架,基于WerkzeugWSGI工具库和Jinja2模板引擎构建,下面给大家介绍PythonFl... 目录一、Flask 库简介二、核心组件与架构三、常用函数与核心操作 ​1. 基础应用搭建​2. 路由与参