从JM8.6代码看Bitstream、DataPartition、Slice、Picture的关系及码流结构本质

本文主要是介绍从JM8.6代码看Bitstream、DataPartition、Slice、Picture的关系及码流结构本质,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        在global.h中有:

typedef struct
{int             byte_pos;           //!< current position in bitstream;int             bits_to_go;         //!< current bitcounterbyte            byte_buf;           //!< current buffer for last written byteint             stored_byte_pos;    //!< storage for position in bitstream;int             stored_bits_to_go;  //!< storage for bitcounterbyte            stored_byte_buf;    //!< storage for buffer of last written bytebyte            byte_buf_skip;      //!< current buffer for last written byteint             byte_pos_skip;      //!< storage for position in bitstream;int             bits_to_go_skip;    //!< storage for bitcounterbyte            *streamBuffer;      //!< actual buffer for written bytesint             write_flag;         //!< Bitstream contains data and needs to be written} Bitstream;

      在Bitstream中最重要的便是streamBuffer,这个里面装码流
   

typedef struct datapartition
{Bitstream           *bitstream;EncodingEnvironment ee_cabac;int                 (*writeSyntaxElement)(SyntaxElement *, struct datapartition *);/*!< virtual function;actual method depends on chosen data partition andentropy coding method  */
} DataPartition;

     可见,一个数据分块对应一个Bitstream

typedef struct
{int                 picture_id;int                 qp;int                 picture_type; //!< picture typeint                 start_mb_nr;int                 max_part_nr;  //!< number of different partitionsint                 num_mb;       //!< number of MBs in the sliceDataPartition       *partArr;     //!< array of partitionsMotionInfoContexts  *mot_ctx;     //!< pointer to struct of context models for use in CABACTextureInfoContexts *tex_ctx;     //!< pointer to struct of context models for use in CABAC// !KS: RMPNI buffer should be retired. just do some sore simple stuffRMPNIbuffer_t        *rmpni_buffer; //!< stores the slice temporary buffer remapping commandsint                 ref_pic_list_reordering_flag_l0;int                 *remapping_of_pic_nums_idc_l0;int                 *abs_diff_pic_num_minus1_l0;int                 *long_term_pic_idx_l0;int                 ref_pic_list_reordering_flag_l1;int                 *remapping_of_pic_nums_idc_l1;int                 *abs_diff_pic_num_minus1_l1;int                 *long_term_pic_idx_l1;Boolean             (*slice_too_big)(int bits_slice); //!< for use of callback functionsint                 field_ctx[3][2]; //GB} Slice;

       可见,x(x >= 1,且x通常为1,为了简便起见,此处只讨论x为1)个数据分块对应一个片(也叫条带)


 

typedef struct 
{int   no_slices;int   idr_flag;Slice *slices[MAXSLICEPERPICTURE];int bits_per_picture;float distortion_y;float distortion_u;float distortion_v;
} Picture;

       可见,x(x >= 1,且x通常为1)片构成一个图像(可以是帧,可以是顶场和底场)

 

      从宏观上来看,码流的结构大致是这样的: (其中      表示分隔符,只考虑一个数据分块对应一个片)

                SPS             PPS          IDR Slice           Slice            Slice             PPS              Slice  ............

            NALU1       NALU2        NALU3        NALU4        NALU5       NALU6       NALU7

    (注意:PPS理论上可以很多,实际上可以只有第一个,  具体情况由编码器决定.)

 

      我们知道,写码流操作是这样的:每写一次码流,实际上要写“分隔符” + “NALU”. 程序在调用start_sequence函数的时候,写入的是“分隔符” + “SPS” 和 “分隔符” + “PPS”. 跟踪程序发现,除了这两次之外,每编码一个片都要进行一次码流的写入,一下程序就证明了这一点:

 

static int writeout_picture(Picture *pic)
{Bitstream *currStream;int partition, slice;Slice *currSlice;img->currentPicture=pic;// 每个片,都会调用一次writeUnit,每个writeUnit都会调用一次WriteAnnexNALUfor (slice=0; slice<pic->no_slices; slice++){currSlice = pic->slices[slice];for (partition=0; partition<currSlice->max_part_nr; partition++) // 调试发现,这层循环只有一次,故为了简便起见,仅仅讨论一个数据分片对应一个片的情形{currStream = (currSlice->partArr[partition]).bitstream;assert (currStream->bits_to_go == 8);    //! should always be the case, the //! byte alignment is done in terminate_slicewriteUnit (currSlice->partArr[partition].bitstream,partition);}           // partition loop}           // slice loopreturn 0;   
}

 

      综上所述:(为了简便起见,仅考虑一个数据分块对应一个片

     

      1.  一个Bitstream对应一个DataPartition对应一个Slice, 而x(x >= 1)个Slice对应一个Picture.
           (一个Slice最终可以组装成一个NALU)

 

      2. 组成H.264码流的

          从理论上来讲可以是:一个SPS 和m个PPS和n个Slice,并在其前插入(1 + m + n)个分隔符.

          但从实际编码器来讲:视频序列的PPS可以共用,故只需插入 (1 + 1 + n)个分隔符,JM8.6中就是这种形式.

这篇关于从JM8.6代码看Bitstream、DataPartition、Slice、Picture的关系及码流结构本质的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/684912

相关文章

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Java中Map.Entry()含义及方法使用代码

《Java中Map.Entry()含义及方法使用代码》:本文主要介绍Java中Map.Entry()含义及方法使用的相关资料,Map.Entry是Java中Map的静态内部接口,用于表示键值对,其... 目录前言 Map.Entry作用核心方法常见使用场景1. 遍历 Map 的所有键值对2. 直接修改 Ma

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L