漫话Redis源码之七十八

2024-02-06 09:38
文章标签 源码 redis 七十八 漫话

本文主要是介绍漫话Redis源码之七十八,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

bio操作相关的实现,对于线程,互斥量,条件变量,也需要理解清楚哦:

#include "server.h"
#include "bio.h"static pthread_t bio_threads[BIO_NUM_OPS];
static pthread_mutex_t bio_mutex[BIO_NUM_OPS];
static pthread_cond_t bio_newjob_cond[BIO_NUM_OPS];
static pthread_cond_t bio_step_cond[BIO_NUM_OPS];
static list *bio_jobs[BIO_NUM_OPS];
/* The following array is used to hold the number of pending jobs for every* OP type. This allows us to export the bioPendingJobsOfType() API that is* useful when the main thread wants to perform some operation that may involve* objects shared with the background thread. The main thread will just wait* that there are no longer jobs of this type to be executed before performing* the sensible operation. This data is also useful for reporting. */
static unsigned long long bio_pending[BIO_NUM_OPS];/* This structure represents a background Job. It is only used locally to this* file as the API does not expose the internals at all. */
struct bio_job {time_t time; /* Time at which the job was created. *//* Job specific arguments.*/int fd; /* Fd for file based background jobs */lazy_free_fn *free_fn; /* Function that will free the provided arguments */void *free_args[]; /* List of arguments to be passed to the free function */
};void *bioProcessBackgroundJobs(void *arg);/* Make sure we have enough stack to perform all the things we do in the* main thread. */
#define REDIS_THREAD_STACK_SIZE (1024*1024*4)/* Initialize the background system, spawning the thread. */
void bioInit(void) {pthread_attr_t attr;pthread_t thread;size_t stacksize;int j;/* Initialization of state vars and objects */for (j = 0; j < BIO_NUM_OPS; j++) {pthread_mutex_init(&bio_mutex[j],NULL);pthread_cond_init(&bio_newjob_cond[j],NULL);pthread_cond_init(&bio_step_cond[j],NULL);bio_jobs[j] = listCreate();bio_pending[j] = 0;}/* Set the stack size as by default it may be small in some system */pthread_attr_init(&attr);pthread_attr_getstacksize(&attr,&stacksize);if (!stacksize) stacksize = 1; /* The world is full of Solaris Fixes */while (stacksize < REDIS_THREAD_STACK_SIZE) stacksize *= 2;pthread_attr_setstacksize(&attr, stacksize);/* Ready to spawn our threads. We use the single argument the thread* function accepts in order to pass the job ID the thread is* responsible of. */for (j = 0; j < BIO_NUM_OPS; j++) {void *arg = (void*)(unsigned long) j;if (pthread_create(&thread,&attr,bioProcessBackgroundJobs,arg) != 0) {serverLog(LL_WARNING,"Fatal: Can't initialize Background Jobs.");exit(1);}bio_threads[j] = thread;}
}void bioSubmitJob(int type, struct bio_job *job) {job->time = time(NULL);pthread_mutex_lock(&bio_mutex[type]);listAddNodeTail(bio_jobs[type],job);bio_pending[type]++;pthread_cond_signal(&bio_newjob_cond[type]);pthread_mutex_unlock(&bio_mutex[type]);
}void bioCreateLazyFreeJob(lazy_free_fn free_fn, int arg_count, ...) {va_list valist;/* Allocate memory for the job structure and all required* arguments */struct bio_job *job = zmalloc(sizeof(*job) + sizeof(void *) * (arg_count));job->free_fn = free_fn;va_start(valist, arg_count);for (int i = 0; i < arg_count; i++) {job->free_args[i] = va_arg(valist, void *);}va_end(valist);bioSubmitJob(BIO_LAZY_FREE, job);
}void bioCreateCloseJob(int fd) {struct bio_job *job = zmalloc(sizeof(*job));job->fd = fd;bioSubmitJob(BIO_CLOSE_FILE, job);
}void bioCreateFsyncJob(int fd) {struct bio_job *job = zmalloc(sizeof(*job));job->fd = fd;bioSubmitJob(BIO_AOF_FSYNC, job);
}void *bioProcessBackgroundJobs(void *arg) {struct bio_job *job;unsigned long type = (unsigned long) arg;sigset_t sigset;/* Check that the type is within the right interval. */if (type >= BIO_NUM_OPS) {serverLog(LL_WARNING,"Warning: bio thread started with wrong type %lu",type);return NULL;}switch (type) {case BIO_CLOSE_FILE:redis_set_thread_title("bio_close_file");break;case BIO_AOF_FSYNC:redis_set_thread_title("bio_aof_fsync");break;case BIO_LAZY_FREE:redis_set_thread_title("bio_lazy_free");break;}redisSetCpuAffinity(server.bio_cpulist);makeThreadKillable();pthread_mutex_lock(&bio_mutex[type]);/* Block SIGALRM so we are sure that only the main thread will* receive the watchdog signal. */sigemptyset(&sigset);sigaddset(&sigset, SIGALRM);if (pthread_sigmask(SIG_BLOCK, &sigset, NULL))serverLog(LL_WARNING,"Warning: can't mask SIGALRM in bio.c thread: %s", strerror(errno));while(1) {listNode *ln;/* The loop always starts with the lock hold. */if (listLength(bio_jobs[type]) == 0) {pthread_cond_wait(&bio_newjob_cond[type],&bio_mutex[type]);continue;}/* Pop the job from the queue. */ln = listFirst(bio_jobs[type]);job = ln->value;/* It is now possible to unlock the background system as we know have* a stand alone job structure to process.*/pthread_mutex_unlock(&bio_mutex[type]);/* Process the job accordingly to its type. */if (type == BIO_CLOSE_FILE) {close(job->fd);} else if (type == BIO_AOF_FSYNC) {/* The fd may be closed by main thread and reused for another* socket, pipe, or file. We just ignore these errno because* aof fsync did not really fail. */if (redis_fsync(job->fd) == -1 &&errno != EBADF && errno != EINVAL){int last_status;atomicGet(server.aof_bio_fsync_status,last_status);atomicSet(server.aof_bio_fsync_status,C_ERR);atomicSet(server.aof_bio_fsync_errno,errno);if (last_status == C_OK) {serverLog(LL_WARNING,"Fail to fsync the AOF file: %s",strerror(errno));}} else {atomicSet(server.aof_bio_fsync_status,C_OK);}} else if (type == BIO_LAZY_FREE) {job->free_fn(job->free_args);} else {serverPanic("Wrong job type in bioProcessBackgroundJobs().");}zfree(job);/* Lock again before reiterating the loop, if there are no longer* jobs to process we'll block again in pthread_cond_wait(). */pthread_mutex_lock(&bio_mutex[type]);listDelNode(bio_jobs[type],ln);bio_pending[type]--;/* Unblock threads blocked on bioWaitStepOfType() if any. */pthread_cond_broadcast(&bio_step_cond[type]);}
}/* Return the number of pending jobs of the specified type. */
unsigned long long bioPendingJobsOfType(int type) {unsigned long long val;pthread_mutex_lock(&bio_mutex[type]);val = bio_pending[type];pthread_mutex_unlock(&bio_mutex[type]);return val;
}/* If there are pending jobs for the specified type, the function blocks* and waits that the next job was processed. Otherwise the function* does not block and returns ASAP.** The function returns the number of jobs still to process of the* requested type.** This function is useful when from another thread, we want to wait* a bio.c thread to do more work in a blocking way.*/
unsigned long long bioWaitStepOfType(int type) {unsigned long long val;pthread_mutex_lock(&bio_mutex[type]);val = bio_pending[type];if (val != 0) {pthread_cond_wait(&bio_step_cond[type],&bio_mutex[type]);val = bio_pending[type];}pthread_mutex_unlock(&bio_mutex[type]);return val;
}/* Kill the running bio threads in an unclean way. This function should be* used only when it's critical to stop the threads for some reason.* Currently Redis does this only on crash (for instance on SIGSEGV) in order* to perform a fast memory check without other threads messing with memory. */
void bioKillThreads(void) {int err, j;for (j = 0; j < BIO_NUM_OPS; j++) {if (bio_threads[j] == pthread_self()) continue;if (bio_threads[j] && pthread_cancel(bio_threads[j]) == 0) {if ((err = pthread_join(bio_threads[j],NULL)) != 0) {serverLog(LL_WARNING,"Bio thread for job type #%d can not be joined: %s",j, strerror(err));} else {serverLog(LL_WARNING,"Bio thread for job type #%d terminated",j);}}}
}

这篇关于漫话Redis源码之七十八的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/683878

相关文章

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

Redis指南及6.2.x版本安装过程

《Redis指南及6.2.x版本安装过程》Redis是完全开源免费的,遵守BSD协议,是一个高性能(NOSQL)的key-value数据库,Redis是一个开源的使用ANSIC语言编写、支持网络、... 目录概述Redis特点Redis应用场景缓存缓存分布式会话分布式锁社交网络最新列表Redis各版本介绍旧

Java如何从Redis中批量读取数据

《Java如何从Redis中批量读取数据》:本文主要介绍Java如何从Redis中批量读取数据的情况,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一.背景概述二.分析与实现三.发现问题与屡次改进3.1.QPS过高而且波动很大3.2.程序中断,抛异常3.3.内存消

Redis中的Lettuce使用详解

《Redis中的Lettuce使用详解》Lettuce是一个高级的、线程安全的Redis客户端,用于与Redis数据库交互,Lettuce是一个功能强大、使用方便的Redis客户端,适用于各种规模的J... 目录简介特点连接池连接池特点连接池管理连接池优势连接池配置参数监控常用监控工具通过JMX监控通过Pr

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)

《Golang实现Redis分布式锁(Lua脚本+可重入+自动续期)》本文主要介绍了Golang分布式锁实现,采用Redis+Lua脚本确保原子性,持可重入和自动续期,用于防止超卖及重复下单,具有一定... 目录1 概念应用场景分布式锁必备特性2 思路分析宕机与过期防止误删keyLua保证原子性可重入锁自动

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3