栈溢出防御之——Windows安全机制GS编译选项

2024-02-05 19:58

本文主要是介绍栈溢出防御之——Windows安全机制GS编译选项,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

安全漏洞中有个重灾区:栈溢出。利用类似memset之类的字符串修改函数,输入超出正常长度的字符串,导致栈溢出,从而影响其它数据(返回地址、标志变量等)。

维基百科给出的资料http://zh.wikipedia.org/wiki/%E5%A0%86%E6%A0%88%E6%BA%A2%E5%87%BA主要是函数无限调用导致的堆栈溢出,下面给出个0day2里面的例子温习下栈溢出:

[cpp]  view plain copy
  1. #include <stdio.h>  
  2. #define PASSWORD "1234567"  
  3. int verify_password (char *password)  
  4. {  
  5.     int authenticated;  
  6.     char buffer[8];  
  7.     authenticated=strcmp(password,PASSWORD);  
  8.     strcpy(buffer,password);//over flowed here!   
  9.     return authenticated;  
  10. }  
  11. main()  
  12. {  
  13.     int valid_flag=0;  
  14.     char password[1024];  
  15.     FILE * fp;  
  16.     if(!(fp=fopen("password.txt","rw+")))  
  17.     {  
  18.         exit(0);  
  19.     }  
  20.     fscanf(fp,"%s",password);  
  21.     valid_flag = verify_password(password);  
  22.     if(valid_flag)  
  23.     {  
  24.         printf("incorrect password!\n");  
  25.     }  
  26.     else  
  27.     {  
  28.         printf("Congratulation! You have passed the verification!\n");  
  29.     }  
  30.     fclose(fp);  
  31. }  
(用VC6编译吧,别选上了GS)

编译运行后会发现任何99999999等大于1234567的八位数字字符串都可以通过验证,这是什么原因呢。很简单,首先要了解栈结构,大概说下authenticated栈中位置在buffer字符串后面,而输入8个字符导致最后一个NULL字符串结束标志就覆盖了authenticated的前1个byte(小端规则,这也是为什么要大于1234567,否则覆盖后authenticated是00FFFFFF,而不是00000000),从而认证成功。(authenticated由01000000被覆盖为00000000)

面对这个重灾区,Windows在VS 7.0(Visual Studio 2003)及以后版本的Visual Studio中默认启动了一个安全编译选项——GS(针对缓冲区溢出时覆盖函数返回地址这一特征),来增加栈溢出的难度。(很明显,对没有重新编译的软件来说,得不到保护,仍旧有这种安全漏洞。)


GS编译选项为每个函数调用增加了一些额外的数据和操作,用以检查栈中的溢出:

1、在所有函数调用发生时,向栈帧内压入一个额外的随机DWORD,这个随机数被称为canary(想把栈帧数据当成金丝雀般用笼子圈起来),如果用IDA反汇编的话,会看看到IDA会将这个随机数标志为Security Cookie。

2、Security Cookie位于EBP之前,系统还将在.data的内存区域中存放一个Security Cookie的副本,从而进行校验;

3、当栈中发生溢出时,Security Cookie将被首先淹没,之后才是EBP和返回地址;

4、在函数返回之前,系统将会执行一个额外的安全验证操作,被称作Security Check;

5、在Security Check的过程中,系统将比较栈帧中原先存放的Security Cookie和.data中副本的值,如果两者不吻合,说明栈中的Security Cookie已经被破坏了,即栈中发生了溢出;

6、当检测到栈中发生溢出时,系统将进入异常处理流程,函数不会被正常返回,ret指令也不会被执行。

但是额外的数据和操作带来的直接后果就是系统性能的下降,为了将对性能的影响降到最小,编译器在编译程序的时候并不是对所有的函数都应用GS,一下情况不会应用GS:

1、函数不包含缓冲区;

2、函数被定义为加油变脸参数列表;

3、函数使用无保护的关键字标记;

4、函数在第一个语句中包含内嵌汇编代码;

5、缓冲区不是8字节类型而且大小不大于4个字节。

(有了例外,就有利用相对特性的GS突破。)


除了在返回地址钱添加Security Cookie外,在Visual Studio 2005及后续版本还使用了变量重排技术,在编译时根据局部变量的类型对变量在栈帧中的位置进行调整,将字符串变量移动到栈帧的高地址。这样可以防止该字符串溢出时破坏其他的局部变量。同时还会降指针参数和字符串参数复制到内存中的低地址,防止函数参数被破坏。


GS的Security Cookie产生的一些细节:

1、系统以.data节第一个双字作为Cookie的种子,或者原始Cookie(所欲函数的Cookie都用这个DWORD生成)

2、在程序每次运行时Cookie的种子都不用,因此种子加油很强的随机性;

3、在栈帧初始化以后系统用EBP异或种子,作为当前函数的Cookie,以此作为不同函数之间的区别,并增加Cookie的随机性;

4、在函数返回时前,用EBP还原出(异或)Cookie的种子。


突破方法:

1、利用未被保护的内存突破GS。为了将GS对性能的影响降到最小,并不是所有的函数都会被保护,所有就可以利用其中一些未被保护的函数绕过GS的保护;

2、基于改写函数指针的攻击,如C++虚函数攻击;

3、针对异常处理机制的攻击;

4、堆溢出没有保护。

这篇关于栈溢出防御之——Windows安全机制GS编译选项的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681999

相关文章

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

Windows 上如果忘记了 MySQL 密码 重置密码的两种方法

《Windows上如果忘记了MySQL密码重置密码的两种方法》:本文主要介绍Windows上如果忘记了MySQL密码重置密码的两种方法,本文通过两种方法结合实例代码给大家介绍的非常详细,感... 目录方法 1:以跳过权限验证模式启动 mysql 并重置密码方法 2:使用 my.ini 文件的临时配置在 Wi

JAVA保证HashMap线程安全的几种方式

《JAVA保证HashMap线程安全的几种方式》HashMap是线程不安全的,这意味着如果多个线程并发地访问和修改同一个HashMap实例,可能会导致数据不一致和其他线程安全问题,本文主要介绍了JAV... 目录1. 使用 Collections.synchronizedMap2. 使用 Concurren

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Windows Docker端口占用错误及解决方案总结

《WindowsDocker端口占用错误及解决方案总结》在Windows环境下使用Docker容器时,端口占用错误是开发和运维中常见且棘手的问题,本文将深入剖析该问题的成因,介绍如何通过查看端口分配... 目录引言Windows docker 端口占用错误及解决方案汇总端口冲突形成原因解析诊断当前端口情况解

SpringRetry重试机制之@Retryable注解与重试策略详解

《SpringRetry重试机制之@Retryable注解与重试策略详解》本文将详细介绍SpringRetry的重试机制,特别是@Retryable注解的使用及各种重试策略的配置,帮助开发者构建更加健... 目录引言一、SpringRetry基础知识二、启用SpringRetry三、@Retryable注解

SpringKafka错误处理(重试机制与死信队列)

《SpringKafka错误处理(重试机制与死信队列)》SpringKafka提供了全面的错误处理机制,通过灵活的重试策略和死信队列处理,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、Spring Kafka错误处理基础二、配置重试机制三、死信队列实现四、特定异常的处理策略五

Redis在windows环境下如何启动

《Redis在windows环境下如何启动》:本文主要介绍Redis在windows环境下如何启动的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis在Windows环境下启动1.在redis的安装目录下2.输入·redis-server.exe

idea maven编译报错Java heap space的解决方法

《ideamaven编译报错Javaheapspace的解决方法》这篇文章主要为大家详细介绍了ideamaven编译报错Javaheapspace的相关解决方法,文中的示例代码讲解详细,感兴趣的... 目录1.增加 Maven 编译的堆内存2. 增加 IntelliJ IDEA 的堆内存3. 优化 Mave

Python从零打造高安全密码管理器

《Python从零打造高安全密码管理器》在数字化时代,每人平均需要管理近百个账号密码,本文将带大家深入剖析一个基于Python的高安全性密码管理器实现方案,感兴趣的小伙伴可以参考一下... 目录一、前言:为什么我们需要专属密码管理器二、系统架构设计2.1 安全加密体系2.2 密码强度策略三、核心功能实现详解