深度解析ScheduledThreadPoolExecutor源码之ScheduledFutureTask

本文主要是介绍深度解析ScheduledThreadPoolExecutor源码之ScheduledFutureTask,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 引言
  • 一、RunnableScheduledFuture定义周期性接口
  • 二、ScheduledFutureTask源码分析
    • 2.1 ScheduledFutureTask参数解析
    • 2.2 ScheduledFutureTask源码方法解析
  • 总结


引言

在上一章节我们已经对ScheduledThreadPoolExecutor中的延迟队列DelayedWorkQueue做了源码分析深度解析ScheduledThreadPoolExecutor源码之DelayedWorkQueue,接下来我们将对ScheduledThreadPoolExecutor中的另一个核心类ScheduledFutureTask做源码讲解。在阅读此文章之前,希望您已经掌握了关于JDK中关于FutureFutureTask相关的知识点,如果您对FutureTask的原理还不太了解,您可以先阅读文章Java中的Future源码讲解进行初步了解。


一、RunnableScheduledFuture定义周期性接口

ScheduledFutureTask继承FutureTask标志着该类可以作为Runnable接口的实现类放入Thread线程中运行,关于FutureTask的源码解析可参考文章Future源码讲解,在此处就不再过多解析。ScheduledFutureTask除了继承FutureTask之外,还实现了接口
RunnableScheduledFuture,因为仅仅继承FutureTask类只能保证ScheduledFutureTask可以放在Thread中运行,但是并无法标识该任务是一次性任务还是周期性任务还是延迟任务。因此RunnableScheduledFuture接口提供了方法isPeriodic来让其实现类标识是否是周期性任务。
在这里插入图片描述
因此ScheduledFutureTask只需要实现RunnableScheduledFuture接口中的isPeriodic方法,通过返回的布尔值即可标识当前任务是否是周期性任务。现在解决了标识一个任务是否是周期性任务的问题,另一个问题则是如何计算任务应该何时运行,ScheduledFutureRunnableScheduledFuture所继承,在ScheduledFuture又继承了Delayed接口,Delayed接口定义了一个方法getDelay用于返回待延迟执行的时间戳值。规定如果getDelay返回的值大于0,则表示该任务还未到执行时间,如果等于或者小于0,则表示当前任务可以被执行。

/*** A delayed result-bearing action that can be cancelled.* Usually a scheduled future is the result of scheduling* a task with a {@link ScheduledExecutorService}.** @since 1.5* @author Doug Lea* @param <V> The result type returned by this Future*/
public interface ScheduledFuture<V> extends Delayed, Future<V> {
}

请注意看,Delayed 继承了Comparable接口,因此实现该接口的类,可以通过实现Comparable提供的compareTo方法进行比较,根据两个任务调用getDelay方法返回值来判断哪个任务优先执行,结合DelayedWorkQueue的最小堆算法,则可以保证任务执行的顺序

public interface Delayed extends Comparable<Delayed> {/*** Returns the remaining delay associated with this object, in the* given time unit.** @param unit the time unit* @return the remaining delay; zero or negative values indicate* that the delay has already elapsed* 返回还剩多长时间任务才能被允许执行* 如果返回0或者负数,表示任务已经过期,应该马上被执行* 实现该接口的元素,会根据延迟时间的顺序被放入队列(PriorityQueue),时间越短则越靠近对头*/long getDelay(TimeUnit unit);
}
public interface Comparable<T> {public int compareTo(T o);
}

至此,对ScheduledFutureTask大体的实现流程有一定的概念,即:ScheduledFutureTask继承FutureTask以至于可以作为Runnable接口实现类放入Thread中运行,实现接口RunnableScheduledFutureisPeriodic方法可以确定任务的类型(定时周期性、延迟周期性、一次性任务),实现接口DelayedgetDelay方法,计算出任务可执行的时间,接着通过实现Comparable提供的compareTo方法,将两个任务通过getDelay方法返回的值进行比较,getDelay返回的数值越小,则任务越应该尽早的执行,有了比较的依据,则通过最小堆算法放入DelayedWorkQueue中,等待线程获取任务执行。以上就是ScheduledFutureTask实现的大体流程,接下来我们将结合代码进一步仔细分析。

二、ScheduledFutureTask源码分析

ScheduledFutureTask作为FutureTask的增强类,增加了getDelay方法用于计算任务当前时间是否应该被执行,compareTo方法则用于比较多个任务之间执行顺序排序。isPeriodic方法则可以标识当前任务是否是周期性任务。接下来我们进入JDK源码从上往下依次解析每个参数与方法的具体作用和实现。
在这里插入图片描述

2.1 ScheduledFutureTask参数解析

ScheduledFutureTask中定义的参数比较少,sequenceNumber是相当于一个任务的身份标识,当创建一个任务(ScheduledFutureTask)时会为任务的属性sequenceNumber赋值一个唯一值用于区分任务。time参数用于记录任务何时应该执行的时间戳。period则是用于标识一个任务的类型(周期性、延迟任务、单次任务)。outerTask则是记录任务本身,如果任务是周期性的时候,执行完一次任务后可以将该任务重新放入DelayedWorkQueue中。heapIndex则是记录当前任务在二叉堆中的索引位置,记录该位置是为了更方便通过索引查到任务。关于二叉堆的相关知识点,我们已经在上一章节讲过,请参考文章深度解析ScheduledThreadPoolExecutor源码之DelayedWorkQueue

/*** Sequence number to break ties FIFO 分配的唯一序列号*/private final long sequenceNumber;/*** The time the task is enabled to execute in nanoTime units* 执行任务的时间*/private long time;/*** Period in nanoseconds for repeating tasks.  A positive* value indicates fixed-rate execution.  A negative value* indicates fixed-delay execution.  A value of 0 indicates a* non-repeating task.* 一个积极的取值表示固定速率执行。* 负值固定延迟执行。* 0表示无重复的任务* 重复任务的周期,以纳秒为单位 表示是否周期性任务,还是延迟任务*/private final long period;/*** The actual task to be re-enqueued by reExecutePeriodic* ScheduledFutureTask对象,实际指向当前对象本身*/RunnableScheduledFuture<V> outerTask = this;/*** Index into delay queue, to support faster cancellation.* 当前任务在延迟队列中的索引*/int heapIndex;

2.2 ScheduledFutureTask源码方法解析

ScheduledFutureTask中方法并不多,根据这些方法的名称大概能猜测每个方法的作用,接下来我们将通过源码对每个方法进行解析。
在这里插入图片描述
ScheduledFutureTask 提供了三个构造方法,super(r, result)则是调用父类FutureTask将传入的Runnableresult构建成一个Callable并初始化任务状态为NEW如果您对FutureTask的实现还不太清除,您可以参考文章 Future源码讲解。将传入的执行时间戳赋值给time,因为time用于记录任务何时执行,period 则是标识该任务是否为周期性任务,如果不传则默认为0,表示当前任务是周期性任务。第三个构造函数允许您传入自己定义的callable,这样就不再由FutureTask自动为你构建callable

/*** Creates a one-shot action with given nanoTime-based trigger time.* 传入Runnable和一个固定的返回值,并指定任务执行的时间*/ScheduledFutureTask(Runnable r, V result, long ns) {super(r, result);this.time = ns;this.period = 0;//表示是一个单次任务this.sequenceNumber = sequencer.getAndIncrement( );}/*** Creates a periodic action with given nano time and period.* 创建具有给定纳米时间和周期的周期性动作。*/ScheduledFutureTask(Runnable r, V result, long ns, long period) {super(r, result);this.time = ns;this.period = period;this.sequenceNumber = sequencer.getAndIncrement();}/*** Creates a one-shot action with given nanoTime-based trigger time.* 使用给定的基于nanotime的触发时间创建一个一次性动作。*/ScheduledFutureTask(Callable<V> callable, long ns) {super(callable);this.time = ns;this.period = 0;this.sequenceNumber = sequencer.getAndIncrement();}

getDelay方法来源于Delayed接口,getDelay方法返回值用于确定任务是否到了可执行状态,如果返回值大于0,则表示任务还需要等待返回值的时间才能执行,如果小于等于0,则表示任务可以被执行。time在参数讲解的时候提到过,time记录着该任务可被执行的时间,time - now() 则返回可执行时间于当前时间的差值,从而判断任务是否到了可执行时间。

/*** 获取当前任务延迟执行的时间** @param unit* @return*/public long getDelay(TimeUnit unit) {return unit.convert(time - now(), NANOSECONDS);//time记录着任务应该被执行的时间,time-now()==等于距离可执行时间的差值}

isPeriodic方法来源于接口RunnableScheduledFuture,用于定义一个任务的类型(周期性一次性),通过参数period 是否为0来确定是否为周期性任务。在进行ScheduledFutureTask构建时,可由用户自己定义任务类型。

/*** Returns {@code true} if this is a periodic (not a one-shot) action.*如果这是一个周期性的(不是一次性的)动作,返回{@code true}。* @return {@code true} if periodic*/public boolean isPeriodic() {return period != 0;}

setNextRunTime方法用于计算出任务下一次执行时间,如果period为0,则表示任务为周期性,则可以计算出下一次执行时间并赋值给time参数,如果为负数,则表示任务是延迟任务,只需要调用triggerTime方法计算出延迟后任务的执行时间即可。

/*** Sets the next time to run for a periodic task.* 为周期性任务设置下一次调度时间*/private void setNextRunTime() {long p = period;if (p > 0) { //如果p大于0,则表示当前任务是一个固定速率的任务,只需要在本次任务执行的时间+p则可以算出下次任务执行的时间time += p;}else { //延迟动作的触发时间time = triggerTime(-p);}}

cancel方法用于取消任务,调用父类FutureTask中的cancel方法将任务状态置为取消,并调用remove方法将该任务从DelayedWorkQueue中移除。

/*** 设置是否可以在任务运行时进行任务取消* @param mayInterruptIfRunning* @return*/public boolean cancel(boolean mayInterruptIfRunning) {boolean cancelled = super.cancel(mayInterruptIfRunning);if (cancelled && removeOnCancel && heapIndex >= 0)remove(this);return cancelled;}

compareTo方法来源于接口Comparable,用于比较两个任务的顺序,离执行时间越近的越先执行。如果任务类型是ScheduledFutureTask,则先通过参数time比较两个任务谁先执行,如果两个任务的执行时间一直,则比较sequenceNumber ,一般来说任务越先创建,sequenceNumber就越小。如果任务非ScheduledFutureTask类型,则通过getDelay方法比较谁离执行时间更近。

/*** 任务比较,用于在插入和出列是进行排序** @param other* @return*/public int compareTo(Delayed other) {if (other == this) // compare zero if same objectreturn 0;if (other instanceof ScheduledFutureTask) {ScheduledFutureTask<?> x = (ScheduledFutureTask<?>) other;long diff = time - x.time;if (diff < 0)return -1;else if (diff > 0)return 1;//此处的比较是,当前两个任务的执行时间一致时(time都一致),则根据sequenceNumber比较,sequenceNumber是在创建任务时设置的// sequenceNumber越小,则任务越先创建else if (sequenceNumber < x.sequenceNumber) {return -1;} else {return 1;}}long diff = getDelay(NANOSECONDS) - other.getDelay(NANOSECONDS);return (diff < 0) ? -1 : (diff > 0) ? 1 : 0;}

run方法来源于Rnnable接口,是任务执行的最核心代码。ScheduledFutureTask重写了FutureTask中的run方法,因此任务执行时,正在执行的代码就是这个方法。首先通过方法isPeriodic判断任务是否为周期性任务,然后通过canRunInCurrentRunState判断任务是否能被执行,如果当前状态无法被执行,则调用cancel方法取消任务。如果任务为非周期性任务,则直接调用父类ScheduledFutureTask.super.run允许任务,如果是周期性任务,则调用cheduledFutureTask.super.runAndReset(),方法runAndReset可以允许任务并在允许完成后将任务状态重置,以此来实现任务的周期重复调用。执行完成后计算出任务下一次执行时间,调用reExecutePeriodic方法尝试将任务重新放入DelayedWorkQueue中等待执行。任务放入DelayedWorkQueue就是调用DelayedWorkQueue的offer方法,这样ScheduledFutureTask与DelayedWorkQueue就关联起来。

/*** Overrides FutureTask version so as to reset/requeue if periodic.* 覆盖FutureTask版本,以便定期重置/重新请求。* 任务允许的真正入口*/public void run() {boolean periodic = isPeriodic();//是否是周期性任务if (!canRunInCurrentRunState(periodic)) { //判断当前任务是否能被允许,查看线程池状态cancel(false);//如果当前任务不能被允许,则尝试取消该任务,中断当前线程}else if (!periodic) {ScheduledFutureTask.super.run(); //如果当前任务非周期性任务,则直接调用一次run方法后结束}else if (ScheduledFutureTask.super.runAndReset()) { //如果是周期性任务,则调用runAndReset方法运行任务,重置任务状态setNextRunTime();//任务完成后计算该任务下一次运行时间reExecutePeriodic(outerTask);//尝试将该任务重新放入延迟队列中等待下次继续运行}}

总结

通过本章节对ScheduledFutureTask的解析,再结合上文深度解析ScheduledThreadPoolExecutor源码之DelayedWorkQueue,我们已经将ScheduledThreadPoolExecutor中两个核心的类进行了全方位解析。剩余的内容则是对ScheduledThreadPoolExecutor内部参数与方法的解析。我们打算将这一部分放到第三章节去讲解。

这篇关于深度解析ScheduledThreadPoolExecutor源码之ScheduledFutureTask的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/681630

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二