机器学习本科课程 大作业 多元时间序列预测

2024-02-05 12:52

本文主要是介绍机器学习本科课程 大作业 多元时间序列预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 问题描述

1.1 阐述问题

对某电力部门的二氧化碳排放量进行回归预测,有如下要求

  • 数据时间跨度从1973年1月到2021年12月,按月份记录。
  • 数据集包括“煤电”,“天然气”,“馏分燃料”等共9个指标的数据(其中早期的部分指标not available)
  • 要求预测从2022年1月开始的半年时间的以下各个部分的排放量

二氧化碳的排放情况具体分为九项指标:

  1. Coal Electric Power Sector CO2 Emissions(煤电力行业二氧化碳排放 )
  2. Natural Gas Electric Power Sector CO2 Emissions(天然气电力行业二氧化碳排放)
  3. Distillate Fuel, Including Kerosene-Type Jet Fuel, Oil Electric Power Sector CO2 Emissions(蒸馏燃料,包括喷气燃料、石油电力行业二氧化碳排放)
  4. Petroleum Coke Electric Power Sector CO2 Emissions(石油焦电力行业二氧化碳排放)
  5. Residual Fuel Oil Electric Power Sector CO2 Emissions(残余燃料油电力行业二氧化碳排放)
  6. Petroleum Electric Power Sector CO2 Emissions(石油电力行业二氧化碳排放)
  7. Geothermal Energy Electric Power Sector CO2 Emissions(地热能电力行业二氧化碳排放)
  8. Non-Biomass Waste Electric Power Sector CO2 Emissions(非生物质废物电力行业二氧化碳排放)
  9. Total Energy Electric Power Sector CO2 Emissions(总能源电力行业二氧化碳排放)

1.2 方案设计

  • 由于9个指标之间存在相关性,对一个指标的未来值进行预测,除了考虑自身的历史值以外,还需要引入其他指标对该指标的影响。
  • 数据量大、时间周期长,需要采用具有较强回归能力的、能够实现时间序列预测任务的机器学习模型。

1.3 方法概括

经过讨论研究,本次实验通过三种神经网络模型独立实现了多元时间序列回归预测任务,分别是:

模型介绍特点
BP误差反向传播网络通过多次学习获取非线性映射
TCN时间卷积网络因果卷积实现时间预测
LSTM长短时记忆网络门控结构保存长时记忆

通过从无到有建立模型、性能优化、模型比较等流程,小组成员强化了机器学习的基础知识,提升了机器学习相应技能的熟练程度,对机器学习的理论和部分模型的特性有了进一步的理解

2. BP神经网络(Backpropagation Neural Network)

2.1 模型原理

BP神经网络是一种前馈神经网络,采用反向传播算法进行训练。该网络由输入层、隐藏层和输出层组成。每个神经元与前一层的所有神经元相连接,每个连接都有一个权重,网络通过调整这些权重来学习输入与输出之间的映射关系。
BP神经网络通过反向传播(Backpropagation)计算模型输出与实际输出之间的误差,然后反向传播误差,调整网络参数以最小化误差。

在本次实验中,采取了500大小的隐藏层,以0.01学习率进行了2000轮的训练。

2.2.1数据处理

从xlsx读取数据,取前80%数据为训练集,后20%为测试集

import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler# 读取xlsx文件
data = pd.read_excel("data.xlsx")
side = 192  # 有缺失部分的长度
side2 = 587  # 整个已知数据的长度
seq_len = 10
batch_size = 64
data = data.iloc[1:side2 + 1]# 提取全部列名
col_names = data.columns.values.tolist()
col_names = [col_names[i] for i in range(1, len(col_names))]
data_list = np.array(data[col_names].values.tolist())# 处理缺失值,用平均值填充
data_list[data_list == "Not Available"] = np.nan
data_list = data_list.astype(float)
imputer = SimpleImputer(strategy='mean', fill_value=np.nan)
data_imputed = imputer.fit_transform(data_list)# 标准化处理
scaler = StandardScaler()
data_normalized = scaler.fit_transform(data_imputed)# 划分训练集和测试集
data_len = len(data_normalized)
train_data = data_normalized[:int(0.75 * data_len)]  # 取前75%作为训练集
test_data = data_normalized[int(0.75 * data_len):]   # 取剩下25%作为测试集

2.3.2 定义画图函数


# 画出曲线
def plot_results(X_test, Y_test, W1, b1, W2, b2, scaler, col_names):Y_pred, _ = forward(X_test, W1, b1, W2, b2)Y_pred_original = scaler.inverse_transform(Y_pred)Y_test_original = scaler.inverse_transform(Y_test)f, ax = plt.subplots(nrows=3, ncols=3, figsize=(20, 10))for i in range(3):for j in range(3):ax[i, j].plot(Y_pred_original[:, 3 * i + j], label='predictions')ax[i, j].plot(Y_test_original[:, 3 * i + j], label='true')ax[i, j].set_title(col_names[3 * i + j])ax[i, j].legend()plt.tight_layout()plt.show()# 绘制Loss曲线
def plot_loss_curve(training_losses, testing_losses):plt.figure(figsize=(10, 6))plt.plot(training_losses, label='Training Loss', color='blue')plt.plot(testing_losses, label='Testing Loss', color='orange')plt.title('Training and Testing Loss Over Epochs')plt.xlabel('Epoch')plt.ylabel('Loss')plt.legend()plt.show()

2.3.3 定义BP神经网络结构

# 参数初始化
def initialize_parameters(input_size, hidden_size, output_size):np.random.seed(42)W1 = np.random.randn(input_size, hidden_size) * 0.01b1 = np.zeros((1, hidden_size))W2 = np.random.randn(hidden_size, output_size) * 0.01b2 = np.zeros((1, output_size))return W1, b1, W2, b2# 前向传播
def forward(X, W1, b1, W2, b2):Z1 = np.dot(X, W1) + b1A1 = np.tanh(Z1)Z2 = np.dot(A1, W2) + b2return Z2, A1# 损失函数
def compute_loss(Y, Y_pred):m = Y.shape[0]loss = np.sum((Y - Y_pred) ** 2) / mreturn loss# 反向传播
def backward(X, A1, Y, Y_pred, W1, W2, b1, b2):m = X.shape[0]dZ2 = Y_pred - YdW2 = np.dot(A1.T, dZ2) / mdb2 = np.sum(dZ2, axis=0, keepdims=True) / mdA1 = np.dot(dZ2, W2.T)dZ1 = dA1 * (1 - np.tanh(A1) ** 2)dW1 = np.dot(X.T, dZ1) / mdb1 = np.sum(dZ1, axis=0, keepdims=True) / mreturn dW1, db1, dW2, db2# 梯度下降更新参数
def update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate):W1 -= learning_rate * dW1b1 -= learning_rate * db1W2 -= learning_rate * dW2b2 -= learning_rate * db2return W1, b1, W2, b2# 训练神经网络
def train_neural_network(X_train, Y_train, X_test, Y_test, input_size, hidden_size, output_size, epochs, learning_rate):W1, b1, W2, b2 = initialize_parameters(input_size, hidden_size, output_size)training_losses = []testing_losses = []start_time = time.time()for epoch in range(epochs):# 前向传播训练集Y_pred_train, A1_train = forward(X_train, W1, b1, W2, b2)# 计算训练集损失train_loss = compute_loss(Y_train, Y_pred_train)training_losses.append(train_loss)# 前向传播测试集Y_pred_test, _ = forward(X_test, W1, b1, W2, b2)# 计算测试集损失test_loss = compute_loss(Y_test, Y_pred_test)testing_losses.append(test_loss)# 反向传播和参数更新dW1, db1, dW2, db2 = backward(X_train, A1_train, Y_train, Y_pred_train, W1, W2, b1, b2)W1, b1, W2, b2 = update_parameters(W1, b1, W2, b2, dW1, db1, dW2, db2, learning_rate)# 打印每个epoch的损失print(f"Epoch {epoch + 1}/{epochs} - Training Loss: {train_loss:.10f} - Testing Loss: {test_loss:.10f}")end_time = time.time()training_duration = end_time - start_timeprint(f"用时 {training_duration:.2f} s")# 结束后,画出图像plot_loss_curve(training_losses, testing_losses)plot_results(X_test, Y_test, W1, b1, W2, b2, scaler, col_names)return W1, b1, W2, b2, training_losses, testing_losses

2.3.4 模型训练流程及性能表现

# 将训练数据和测试数据准备为神经网络输入
X_train = train_data[:-seq_len]
Y_train = train_data[seq_len:]
X_test = test_data[:-seq_len]
Y_test = test_data[seq_len:]# 参数设置
input_size = X_train.shape[1]
hidden_size = 500
output_size = Y_train.shape[1]
epochs = 2000
learning_rate = 0.01# 训练神经网络
W1_final, b1_final, W2_final, b2_final, training_losses, testing_losses = train_neural_network(X_train, Y_train, X_test, Y_test, input_size, hidden_size, output_size, epochs, learning_rate)# 在训练完成后,使用训练好的模型对训练集和测试集进行预测
Y_pred_train, _ = forward(X_train, W1_final, b1_final, W2_final, b2_final)
Y_pred_test, _ = forward(X_test, W1_final, b1_final, W2_final, b2_final)# 将预测值逆归一化
Y_pred_train_original = scaler.inverse_transform(Y_pred_train)
Y_pred_test_original = scaler.inverse_transform(Y_pred_test)# 逆归一化训练集和测试集的真实值
Y_train_original = scaler.inverse_transform(Y_train)
Y_test_original = scaler.inverse_transform(Y_test)# 计算 MAE 和 MSE
mse_on_train = np.mean((Y_train_original - Y_pred_train_original) ** 2)
mse_on_test = np.mean((Y_test_original - Y_pred_test_original) ** 2)
mae_on_train = np.mean(np.abs(Y_train_original - Y_pred_train_original))
mae_on_test = np.mean(np.abs(Y_test_original - Y_pred_test_original))# 输出最终的 MAE 和 MSE
print(f"mse_on_train: {mse_on_train:.10f}     mse_on_test: {mse_on_test:.10f}")
print(f"mae_on_train: {mae_on_train:.10f}     mae_on_test: {mae_on_test:.10f}")

3. TCN网络(Temporal Convolutional Network)

3.1 模型原理

TCN是一种基于卷积操作的神经网络,特别适用于处理时序数据。与传统的循环神经网络(RNN)和LSTM相比,TCN使用卷积层捕捉时序数据中的模式,从而更好地捕获长期依赖关系。

从结构上来说,TCN通常由一个或多个卷积层组成,卷积层的感受野逐渐增大,从而能够捕捉不同尺度的模式。此外,TCN还可以通过残差连接来加强梯度的流动,从而更容易训练深层网络。

3.2.1 数据处理

在第一个实验方案中,BP网络直接将整段历史信息输入给了模型;为了更充分地考虑数据集中的时序信息以及加快训练速度,TCN网络和LSTM采取了时间窗口的划分方式。

滑动窗口(rolling window)将时间序列划分为多个窗口,在每个窗口内进行训练和测试,如果存在较大的波动或季节性变化,而且这些变化的周期较长,使用滑动窗口可以更好地捕捉到这些特征。

TCN中,仍然设定前80%为训练数据,时间窗口大小为16

import pandas as pd
import numpy as np
import torch
from torch import optim
from torch.utils.data import Dataset, DataLoader,TensorDataset
import torch.nn as nn
from sklearn.preprocessing import StandardScaler, Normalizer
import matplotlib.pyplot as pltdef windows_split(data, seq_len):res = []label = []for i in range(len(data) - seq_len):res.append(data[i:i + seq_len])label.append(data[i + seq_len])res = np.array(res).astype(np.float32)label = np.array(label).astype(np.float32)return res, labeldata = pd.read_excel("data.xlsx")
side = 192  # 有缺失部分的长度
side2 = 587  # 整个已知数据的长度
seq_len = 16
batch_size = 64# 提取全部列名
col_names = data.columns.values.tolist()
col_names = [col_names[i] for i in range(1, len(col_names))]
data.replace("Not Available", np.nan, inplace=True)interpolated = data[col_names].interpolate(method='spline', order=3)
data_list = np.array(data[col_names].values.tolist())scalar = StandardScaler()
data_list = scalar.fit_transform(data_list)
data_list[np.isnan(data_list)] = 0data_split, label_split = windows_split(data_list[side:side2], seq_len)
data_split = np.transpose(data_split, (0, 2, 1))
length = data_split.shape[0]data_train = torch.Tensor(data_split[0:int(0.8 * length), :])
label_train = torch.Tensor(label_split[0:int(0.8 * length)])
data_test = torch.Tensor(data_split[int(0.8 * length):int(length), :])
label_test = torch.Tensor(label_split[int(0.8 * length):label_split.shape[0]])dataset_train = TensorDataset(data_train, label_train)
dataset_test = TensorDataset(data_test, label_test)train_loader = DataLoader(dataset_train, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset_test, batch_size=batch_size, shuffle=False)input_size = 9
output_size = 9
num_channels = [32, 64, 128, 256]
kernel_size = 3
dropout = 0
num_epochs = 200

3.2.2 模型定义

每层TCN定义为:[conv, chomp, relu, dropout]*2
学习率0.0001,训练轮数200

import torch
import torch.nn as nn
from torch.nn.utils import weight_normclass Chomp1d(nn.Module):def __init__(self, chomp_size):super(Chomp1d, self).__init__()self.chomp_size = chomp_sizedef forward(self, x):return x[:, :, :-self.chomp_size].contiguous()class TemporalBlock(nn.Module):def __init__(self, n_inputs, n_outputs, kernel_size, stride, dilation, padding, dropout=0.2):super(TemporalBlock, self).__init__()self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size,stride=stride, padding=padding, dilation=dilation))self.chomp1 = Chomp1d(padding)self.relu1 = nn.ReLU()self.dropout1 = nn.Dropout(dropout)self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size,stride=stride, padding=padding, dilation=dilation))self.chomp2 = Chomp1d(padding)self.relu2 = nn.ReLU()self.dropout2 = nn.Dropout(dropout)self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,self.conv2, self.chomp2, self.relu2, self.dropout2)self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else Noneself.relu = nn.ReLU()self.init_weights()def init_weights(self):self.conv1.weight.data.normal_(0, 0.01)self.conv2.weight.data.normal_(0, 0.01)if self.downsample is not None:self.downsample.weight.data.normal_(0, 0.01)def forward(self, x):out = self.net(x)res = x if self.downsample is None else self.downsample(x)return self.relu(out + res)class TemporalConvNet(nn.Module):def __init__(self, num_inputs, num_channels, kernel_size=2, dropout=0.2):super(TemporalConvNet, self).__init__()layers = []num_levels = len(num_channels)for i in range(num_levels):dilation_size = 2 ** iin_channels = num_inputs if i == 0 else num_channels[i-1]out_channels = num_channels[i]layers += [TemporalBlock(in_channels, out_channels, kernel_size, stride=1, dilation=dilation_size,padding=(kernel_size-1) * dilation_size, dropout=dropout)]self.network = nn.Sequential(*layers)def forward(self, x):return self.network(x)class TCN(nn.Module):def __init__(self, input_size, output_size, num_channels, kernel_size, dropout):super(TCN, self).__init__()self.tcn = TemporalConvNet(input_size, num_channels, kernel_size=kernel_size, dropout=dropout)self.linear = nn.Linear(num_channels[-1], output_size)def forward(self, inputs):"""Inputs have to have dimension (N, C_in, L_in)"""y1 = self.tcn(inputs)  # input should have dimension (N, C, L)o = self.linear(y1[:, :, -1])return o

3.2.3 模型训练流程及性能表现

model = TCN(input_size, output_size, num_channels, kernel_size, dropout)
optimizer = optim.Adam(model.parameters(), lr=1e-4)
criterion = nn.MSELoss()
criterion2 = nn.L1Loss()loss_train_list = []
loss_test_list = []
for i in range(num_epochs):model.train()n = 0loss_total = 0for data, label in train_loader:optimizer.zero_grad()pred = model(data)loss = criterion(pred, label)loss.backward()optimizer.step()n += 1loss_total += loss.item()loss_total /= nloss_train_list.append(loss_total)model.eval()loss_test_total = 0n = 0for data,label in test_loader:with torch.no_grad():pred = model(data)loss = criterion(pred, label)loss_test_total += loss.item()n+=1loss_test_total /= nloss_test_list.append(loss_test_total)print('epoch:{0}/{1}    loss_train:{2}      loss_test:{3}'.format(i + 1, num_epochs, loss_total,loss_test_total))model.eval()
prediction = model(data_test)
prediction = prediction.detach().numpy()
label_test = label_test.detach().numpy()prediction = scalar.inverse_transform(prediction)
label_test = scalar.inverse_transform(label_test)f,ax = plt.subplots(nrows=3,ncols=3,figsize=(10, 10))
for i in range(3):for j in range(3):ax[i,j].plot(prediction[:,3 * i + j],label = 'predictions')ax[i,j].plot(label_test[:,3 * i + j],label = 'true')ax[i,j].set_title(col_names[3 * i + j])ax[i,j].legend()
plt.tight_layout()
plt.show()plt.plot(loss_test_list,label = 'loss_on_test')
plt.plot(loss_train_list,label = 'loss_on_train')
plt.legend()
plt.show()prediction_train = model(data_train)
prediction_train = prediction_train.detach().numpy()
prediction_train = scalar.inverse_transform(prediction_train)
label_train = scalar.inverse_transform(label_train)mse_on_train = criterion(torch.Tensor(prediction_train),torch.Tensor(label_train))
rmse_on_train = torch.sqrt(mse_on_train)
mae_on_train = criterion2(torch.Tensor(prediction_train),torch.Tensor(label_train))mse_on_test = criterion(torch.Tensor(prediction),torch.Tensor(label_test))
rmse_on_test = torch.sqrt(mse_on_test)
mae_on_test = criterion2(torch.Tensor(prediction),torch.Tensor(label_test))print('mse_on_train:{0}     mse_on_test:{1}'.format(mse_on_train,mse_on_test))
print('rmse_on_train:{0}     rmse_on_test:{1}'.format(rmse_on_train,rmse_on_test))
print('mae_on_train:{0}     mae_on_test:{1}'.format(mae_on_train,mae_on_test))# data_split = torch.Tensor(data_split)
# label_split = torch.Tensor(label_split)# prediction_rest = []
# windows = torch.cat((data_split[-1,:,1:],label_split[-1].unsqueeze(1)),dim = 1).unsqueeze(0)
# for i in range(6):
#     pred = model(windows)
#     prediction_rest.append(pred.detach().numpy().squeeze())
#     windows = torch.cat((windows[-1,:,1:],torch.transpose(pred, 0, 1)),dim = 1).unsqueeze(0)# # print(prediction_rest)
# prediction_rest = np.array(prediction_rest)
# prediction_rest = scalar.inverse_transform(prediction_rest)# prediction_total = model(data_split)
# prediction_total = prediction_total.detach().numpy()
# label_split = label_split.detach().numpy()# prediction_total = scalar.inverse_transform(prediction_total)
# label_split = scalar.inverse_transform(label_split)
# f,ax = plt.subplots(nrows=3,ncols=3,figsize=(10, 10))# length = prediction_total.shape[0]
# for i in range(3):
#     for j in range(3):
#         ax[i,j].plot(range(length),prediction_total[:,3 * i + j],label = 'predictions')
#         ax[i,j].plot(range(length),label_split[:,3 * i + j],label = 'true')
#         ax[i,j].plot(range(length,length+6),prediction_rest[:,3 * i + j],label = 'rest')
#         ax[i,j].set_title(col_names[3 * i + j])
#         ax[i,j].legend()
# plt.tight_layout()
# plt.show()

4. LSTM网络

4.1 模型原理

LSTM是一种循环神经网络(RNN)的变体,专门设计用来解决长期依赖问题。LSTM引入了门控机制,包括输入门、遗忘门和输出门,以有效地控制信息的流动。

LSTM中的记忆单元可以保留和读取信息,使其能够更好地处理时序数据中的长期依赖关系。遗忘门可以选择性地遗忘先前的信息,输入门可以添加新的信息,输出门控制输出的信息。

4.2.1 数据处理

此部分与TCN相同,采取前80%为训练数据,后20%为测试集,时间窗口大小为16

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScalerdata = pd.read_excel("data.xlsx")empty = 192  # 有缺失部分的长度
side = 587  # 整个已知数据的长度
seq_len = 10
batch_size = 64# 提取全部列名
col_names = data.columns.values.tolist()
col_names = [col_names[i] for i in range(1, len(col_names))]
for col in col_names:data[col] = pd.to_numeric(data[col], errors='coerce').astype(float)# print(data)
data_list = np.array(data[col_names].values.tolist())
# print(data_list)
data_list = data_list[:data_list.shape[0]-6,:]
# print(data_list)
# print(type(data_list[1][1]))
scaler = StandardScaler()
data_list_scaled = scaler.fit_transform(data_list)
data_scaled = pd.DataFrame(data_list_scaled, columns=col_names)def get_data():return data_list
def get_data_scaled():data_list_scaled[np.isnan(data_list_scaled)] = 0# print(data_list_scaled)return data_list_scaled[192:588], data_list_scaleddef plot(prediction, label_test):plt.figure()f,ax = plt.subplots(nrows=3,ncols=3,figsize=(10, 10))for i in range(3):for j in range(3):ax[i,j].plot(label_test[:,3 * i + j],'b-', label = 'true')ax[i,j].plot(prediction[:,3 * i + j],'r-', label = 'predictions')ax[i,j].set_title(col_names[3 * i + j])ax[i,j].legend()plt.tight_layout()plt.show()def plot_loss(train_loss):plt.figure()plt.xlabel('epoch')plt.ylabel('loss')plt.title('Loss-Rate')temp_list = []for i in range(len(train_loss)):temp_list.append(train_loss[i].to('cpu').detach().numpy())plt.plot([i for i in range(len(train_loss))], temp_list, 'b-', label=u'train_loss')plt.legend() plt.show()def create_sliding_window(data, seq_len, test=False):"""## 创建滑动窗口,生成输入序列和对应的目标值。参数:- data: 输入的时序数据,形状为 (num_samples, num_features)- seq_len: 滑动窗口的大小返回:- X: 输入序列,形状为 (num_samples - seq_len, seq_len, num_features)- y: 目标值,形状为 (num_samples - seq_len, num_features)"""X, y = [], []num_samples, num_features = data.shapefor i in range(num_samples - seq_len):window = data[i : i + seq_len, :]target = data[i + seq_len, :]X.append(window)y.append(target)if test:X.append(X[len(X)-1])return np.array(X), np.array(y)def inverse_scale(data):return scaler.inverse_transform(data)

4.2.2 模型定义

import torch
import torch.nn as nn
import torch.optim as optim
import time
# 定义多层LSTM模型
class myLSTM(nn.Module):def __init__(self, input_size, hidden_size, num_layers=2, output_size=9):super(myLSTM, self).__init__()# self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True)self.lstm_layers = nn.ModuleList([nn.LSTM(input_size=input_size if i == 0 else hidden_size,hidden_size=hidden_size,batch_first=True)for i in range(num_layers)])self.fc = nn.Linear(hidden_size, output_size)def forward(self, x):for lstm_layer in self.lstm_layers:x, _ = lstm_layer(x)if len(x.shape) == 3:output = self.fc(x[:, -1, :])  # 取最后一个时间步的输出return outputelse:return xdef train_epoch(model, X_train, y_train, epochs=10, lr=0.001, criterion=nn.MSELoss(), optimizer=None):if optimizer == None:optimizer = optim.Adam(model.parameters(), lr=lr)print(model)# 训练模型train_loss = []t1 = time.time()for epoch in range(epochs):model.train()optimizer.zero_grad()outputs = model(X_train)loss = criterion(outputs, y_train)loss.backward()optimizer.step()train_loss.append(loss)if (epoch + 1) % 5 == 0:print(f'Epoch {epoch + 1}/{epochs}, Loss: {loss.item()}')if (epoch + 1) % 20 == 0:t2 = time.time()print('当前耗时:{:.2f}s'.format(t2-t1))return train_loss
# X_train 的形状为 (samples, time_steps, features)
# y_train 的形状为 (samples, num_targets)

4.2.3 模型训练及性能表现

相关参数:LSTM层数:3,隐藏层大小:2048,学习率:0.0005,训练轮数:400轮

import torch
import numpy as np
import matplotlib.pyplot as plt
ign_data, _ = get_data_scaled()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# device = 'cpu'
# ign_data.shape=(396, 9)# 超参数
input_size = 9      # 每个时间步的特征数:9
hidden_size = 2048    # 隐藏层大小
output_size = 9     # 输出特征数
epochs = 400          # 轮数
lr = 0.0005          # learing rate
num_layers = 3
model = myLSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, output_size=output_size).to(device)seq_len = 16         # 暂定窗口为16
X_, y_ = create_sliding_window(ign_data, seq_len=seq_len)split_rate = 0.8
split_idx = X_.shape[0]*split_rate
split_idx = round(split_idx)
# X_train = torch.tensor(X_, dtype=torch.float32)
# y_train = torch.tensor(y_, dtype=torch.float32)
X_train = torch.tensor(X_[:split_idx,:,:], dtype=torch.float32)
y_train = torch.tensor(y_[:split_idx,:], dtype=torch.float32)
X_test = torch.tensor(X_[split_idx:,:,:], dtype=torch.float32)
y_test = torch.tensor(y_[split_idx:,:], dtype=torch.float32)
# X_test = torch.tensor(ign_data[split_idx:,:,:], dtype=torch.float32)
# y_test = torch.tensor(ign_data[split_idx:,:], dtype=torch.float32)
# 训练模型
train_loss = train_epoch(model, X_train.to(device), y_train.to(device), epochs=epochs, lr=lr)
# 保存模型
torch.save(model.state_dict(),'LSTM-hidden2048-3-copy')plot_loss(train_loss)
model.eval()
with torch.no_grad():predictions = model(X_test.to(device))predictions = predictions.to('cpu').numpy()
# print(predictions)plot(prediction=predictions, label_test=y_test.numpy())

5. 实验结果

在这里插入图片描述

这篇关于机器学习本科课程 大作业 多元时间序列预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680980

相关文章

Java获取当前时间String类型和Date类型方式

《Java获取当前时间String类型和Date类型方式》:本文主要介绍Java获取当前时间String类型和Date类型方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录Java获取当前时间String和Date类型String类型和Date类型输出结果总结Java获取

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库

Spring的RedisTemplate的json反序列泛型丢失问题解决

《Spring的RedisTemplate的json反序列泛型丢失问题解决》本文主要介绍了SpringRedisTemplate中使用JSON序列化时泛型信息丢失的问题及其提出三种解决方案,可以根据性... 目录背景解决方案方案一方案二方案三总结背景在使用RedisTemplate操作redis时我们针对

go中的时间处理过程

《go中的时间处理过程》:本文主要介绍go中的时间处理过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1 获取当前时间2 获取当前时间戳3 获取当前时间的字符串格式4 相互转化4.1 时间戳转时间字符串 (int64 > string)4.2 时间字符串转时间

Golang如何对cron进行二次封装实现指定时间执行定时任务

《Golang如何对cron进行二次封装实现指定时间执行定时任务》:本文主要介绍Golang如何对cron进行二次封装实现指定时间执行定时任务问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录背景cron库下载代码示例【1】结构体定义【2】定时任务开启【3】使用示例【4】控制台输出总结背景

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价