(《机器学习》完整版系列)第15章 规则学习——15.3 归结与逆归结(你可知“反证法”原理?)

本文主要是介绍(《机器学习》完整版系列)第15章 规则学习——15.3 归结与逆归结(你可知“反证法”原理?),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

归结原理(即消解):可以“消除”该互补项

归结与逆归结

上篇我们用“十一条规则”形成一套命题逻辑的形式推理体系,归结原理强大到只需一个规则就可形成一套命题逻辑的形式推理体系。

若互补项(即正文字 L L L与负文字 ¬ L \lnot L ¬L)分别在两子句 C 1 C_1 C1 C 2 C_2 C2中,则可以“消除”该互补项,称为归结原理(即消解),如图15.1 所示。
C = C 1 ⋅ C 2 \begin{align} C=C_1\cdot C_2 \tag{15.9} \end{align} C=C1C2(15.9)
C C C C 1 C_1 C1 C 2 C_2 C2的消解式,简记为
图15.1 归结原理

图15.1 归结原理

不可满足指恒假,参见后续的(15.6 一阶逻辑公式及“分拆”),常用结论:空子句是不可满足的、含有空子句的子句集是不可满足的。
归结原理有一个重要的推论:设 C 1 C_1 C1 C 2 C_2 C2是子句集 S S S中的子句,如果把它俩的消解式 C C C加入到子句集 S S S中,得到子句集 S ′ S' S,则子句集 S S S S ′ S' S的可满足性相同,即
“ S 是不可满足的”等价于“ S ′ 是不可满足的” \begin{align} \text{“$S$是不可满足的”等价于“$S'$是不可满足的”} \tag{15.10} \end{align} S是不可满足的等价于S是不可满足的(15.10)
由此,通常将要证“ S S S是不可满足的”转化为证“ S ′ S' S是不可满足的”。

归结原理式(15.9)的逆运算(逆归结)简记为
{ C 1 = C / C 2 C 2 = C / C 1 \begin{align} \begin{cases} C_1=C / C_2 \\ C_2=C / C_1 \\ \end{cases} \tag{15.11} \end{align} {C1=C/C2C2=C/C1(15.11)

式(15.9)、式(15.11)为图15.1 的简记, C , C 1 , C 2 C,C_1,C_2 C,C1,C2三者中,已知二者可求另一个。

若已知 C , C 1 C,C_1 C,C1,如何“逆归结”出 C 2 C_2 C2

我们先将式(15.9)用集合论变形
C = A ∨ B = ( C 1 − { L } ) ∨ ( C 2 − { ¬ L } ) \begin{align} C & =A\lor B \notag \\ & =(C_1-\{L \})\lor (C_2-\{\lnot L \}) \tag{15.12} \end{align} C=AB=(C1{L})(C2{¬L})(15.12)
通过“移项”得
C − ( C 1 − { L } ) = C 2 − { ¬ L } C 2 = ( C − ( C 1 − { L } ) ) ∨ { ¬ L } \begin{align} & C-(C_1-\{L \})= C_2-\{\lnot L \}\notag \\ & C_2=(C-(C_1-\{L \}))\lor \{\lnot L \} \tag{15.13} \end{align} C(C1{L})=C2{¬L}C2=(C(C1{L})){¬L}(15.13)
式(15.13)这即【西瓜书式(15.9)】,从中可知,选取不同的 L L L,则得到不同的 C 2 C_2 C2,即 C 2 C_2 C2不唯一(未给定 L L L时)。

Σ \Sigma Σ为子句集(多条件), p p p为子句(结论),定理(蕴涵符“ ⊨ \vDash ”参见后续15.8 三种蕴涵) :
Σ ⊨ p 当且仅当: ( p ∨ ¬ Σ ) = T r u e 当且仅当: Σ ∧ ( ¬ p ) 不可满足(即总不成立) \begin{align} \Sigma \vDash p \qquad & \text{当且仅当:} (p\lor \lnot \Sigma)=\mathrm{True}\tag{15.14} \\ & \text{当且仅当:} \Sigma \land (\lnot p)\text{不可满足(即总不成立)} \tag{15.15} \end{align} Σp当且仅当:(p¬Σ)=True当且仅当:Σ(¬p)不可满足(即总不成立)(15.14)(15.15)
其中,式(15.15)即是“反证法”原理,结合式(15.10)得到利用归结进行“反证法”的步骤(参见后续15.11 基于逆归结的机器证明给出了示例):

(1)设条件集(子句集)为 Σ \Sigma Σ,将结论的反面 ¬ p \lnot p ¬p加入到 Σ \Sigma Σ中;

(2)在 Σ \Sigma Σ集中反复归结,结果仍然放到 Σ \Sigma Σ中;

(3)直到归结出一个空子句,即推导出了矛盾(空子句不可满足)。

(i) 证 Σ ⊨ p ⇒ p ∨ ¬ Σ \Sigma \vDash p \Rightarrow p\lor \lnot \Sigma Σpp¬Σ

Σ ⊨ p \Sigma \vDash p Σp,则表明(逻辑代数(布尔代数)中,1表示True;0表示False,通常通过对变量进行赋值来检验式子是否可满足):若 Σ = 1 \Sigma =1 Σ=1,则 p = 1 p=1 p=1

即: 若 ¬ Σ = 0 \lnot \Sigma =0 ¬Σ=0,则 p = 1 p=1 p=1

即有: p ∨ ¬ Σ = 1 p\lor \lnot \Sigma =1 p¬Σ=1

(ii) 证 Σ ⊨ p ⇐ p ∨ ¬ Σ \Sigma \vDash p \Leftarrow p\lor \lnot \Sigma Σpp¬Σ

Σ = 1 \Sigma=1 Σ=1,则 ¬ Σ = 0 \lnot \Sigma =0 ¬Σ=0

p ∨ ¬ Σ = 1 p\lor \lnot \Sigma =1 p¬Σ=1,则 p ∨ 0 = 1 p\lor 0=1 p0=1,即 p = 1 p=1 p=1

上述由 Σ = 1 \Sigma =1 Σ=1推出 p = 1 p=1 p=1,即说明在此条件下 Σ ⊨ p \Sigma \vDash p Σp

受式(15.11)分数表达的启发,我们将图15.1 表达成“分数”,形成逆归结如图15.2 所示。
图15.2 逆归结

图15.2 逆归结

在上述归结的理论下,我们可以考虑命题逻辑的两个特殊子集:(1)限定子句:子句中只有一个正文字(其余为负文字);(2)霍尔子句:子句中至多只有一个正文字(其余为负文字),这两种特性在归结下保持不变,如,一对限定子句(各有一个正文字),若能利用归结原理抵消一对正、负文字后,得到一个新的子句还是只有一个正文字。 在这两种特殊的范围内,可以得到较简单的、机器易于实现的推理系统,这里不作讨论。

本文为原创,您可以:

  • 点赞(支持博主)
  • 收藏(待以后看)
  • 转发(他考研或学习,正需要)
  • 评论(或讨论)
  • 引用(支持原创)
  • 不侵权

上一篇:15.2 形式推理(哥德尔怎么说?)
下一篇:15.4 序贯覆盖(规则集与数据集)

这篇关于(《机器学习》完整版系列)第15章 规则学习——15.3 归结与逆归结(你可知“反证法”原理?)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680748

相关文章

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查