如何在colab配置openmmlab环境(目前网上资料较少,避免踩坑)

2024-02-05 08:32

本文主要是介绍如何在colab配置openmmlab环境(目前网上资料较少,避免踩坑),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.colab简介

colab是谷歌云服务器,作为一款免费的云服务器谷歌可以说是非常良心,可以享受高配置的gpu运行环境,对于我自己而言我自己电脑只能用cpu跑深度学习的代码可以说时间和效率都非常低。接下来根据自己两天的踩坑经验给大家发一款openmmlab在colab的配置教程。但是每次打开记笔记刷新以后都要重新配置,大约十分钟!

2.注意torch和gpu的版本


!sudo lsb_release -a # 查看系统版本
!nvcc -V #或者!nvidia-smi # 查看cuda版本
!gcc --version # 查看GCC版本
``——————————————————手动分割线————————————————
#输出
No LSB modules are available.
Distributor ID:	Ubuntu
Description:	Ubuntu 18.04.5 LTS
Release:	18.04
Codename:	bionic
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2020 NVIDIA Corporation
Built on Wed_Jul_22_19:09:09_PDT_2020
Cuda compilation tools, release 11.0, V11.0.221
Build cuda_11.0_bu.TC445_37.28845127_0
gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions.  There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

1.观察可知Ubuntu18.04,cuda11.0,GCC7.5.0

import torch, torchvision
print(torch.__version__, torch.cuda.is_available())

2.随着时间的推移大家的版本可能都不太一样,我这里是1.9.0 cuda版本是10.2,笔记本设置选择gpu,否则gpu可能是false。
3.可以看到硬件的配置和cuda的版本是不一致的这个时候我们要卸载原来的torch环境,安装指定版本的torch

#卸载原有的pytorch
!pip uninstall torch torchvision -y
#线上安装新的pytorch
!pip install -U torch==1.8.1+cu111 torchvision==0.9.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html

4.把Google云盘挂载到colab上

# 把Google云盘挂载到colab上
from google.colab import drive
drive.mount('/content/gdrive',force_remount=True) #这一步会让你点击链接获取验证码
#目录"/content/gdrive/MyDrive/"就指向你的谷歌云盘了

5.成功挂载以后左侧文件应该是这样的,当然这里你们还没有mmdet等文件夹。
在这里插入图片描述
6.挂载成功以后进入MyDrive文件夹

%cd /content/gdrive/MyDrive/ 

7.进行mmoepnlab的配置

#安装mmdetection
#安装mmdetection
!rm -rf mmdetection #如果有mmdetection文件夹就删掉,下面新建
!git clone https://github.com/open-mmlab/mmdetection.git
%cd mmdetection!pip install mmcv-full
!pip install -e .
# install Pillow 7.0.0 back in order to avoid bug in colab
!pip install Pillow==7.0.0
#静候安装完成,预计10min
import os
os.kill(os.getpid(), 9)
%cd /content/gdrive/MyDrive/ 
#上一步cd主要是为了把mmseg放在MyDrive里面。
!rm -rf mmsegmentation 
!git clone https://github.com/open-mmlab/mmsegmentation.git
%cd mmsegmentation

8.检查是否安装成功

import torch, torchvision
print(torch.__version__, torch.cuda.is_available())# Check MMDetection installation
import mmdet
print(mmdet.__version__)# Check mmcv installation
from mmcv.ops import get_compiling_cuda_version, get_compiler_version
print(get_compiling_cuda_version())
print(get_compiler_version())

如果是下面这样就是安装成功的。
在这里插入图片描述

3.示例程序检测(学会配置config)

config的配置大家需要下载指定的模型保存到checkpoints文件夹中,大家可以根据路径的不同进行调整
** 示例的model下载链接
在这里插入图片描述
大家下载模型成功以后安装到云盘根据路径进行config配置就可以了,记得cd到MyDrive

from mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
from mmseg.core.evaluation import get_palette
import mmcv
from google.colab.patches import cv2_imshow
from google.colab.patches import cv2
from matplotlib import pyplot as pltconfig_file = 'mmsegmentation/configs/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes.py'
checkpoint_file = 'checkpoints/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth'# 从一个 config 配置文件和 checkpoint 文件里创建分割模型
model = init_segmentor(config_file, checkpoint_file, device='cuda:0')# 测试一张样例图片并得到结果
img = 'test.jpg'  # 或者 img = mmcv.imread(img), 这将只加载图像一次.
result = inference_segmentor(model, img)
# 在新的窗口里可视化结果
show_result_pyplot(model, img, result, get_palette('cityscapes'))

在这里插入图片描述

这篇关于如何在colab配置openmmlab环境(目前网上资料较少,避免踩坑)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680320

相关文章

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

mybatis映射器配置小结

《mybatis映射器配置小结》本文详解MyBatis映射器配置,重点讲解字段映射的三种解决方案(别名、自动驼峰映射、resultMap),文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定... 目录select中字段的映射问题使用SQL语句中的别名功能使用mapUnderscoreToCame

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

MySQL8 密码强度评估与配置详解

《MySQL8密码强度评估与配置详解》MySQL8默认启用密码强度插件,实施MEDIUM策略(长度8、含数字/字母/特殊字符),支持动态调整与配置文件设置,推荐使用STRONG策略并定期更新密码以提... 目录一、mysql 8 密码强度评估机制1.核心插件:validate_password2.密码策略级

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方