MATLAB线形规划函数linprog、intlinprog与二次规划函数quadprog

2024-02-05 08:08

本文主要是介绍MATLAB线形规划函数linprog、intlinprog与二次规划函数quadprog,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目标函数简介

线形规划问题的数学模型:

min f(x)=Z*x , x\epsilon R^n  

s.t        A*x\leqslant b

            Aeq*x= beq  

线形规划,顾名思义就是目标函数与约束条件均为线形函数(一次函数)。

二、线形规划函数linprog

linprog函数的用法大致分为以下几种用法:

1、不等式约束

x = linprog(f,A,b)   ,f为目标函数,A为不等式约束的系数矩阵,b为不等式右侧的值,返回值x为最优解。

例1、目标函数       min f=3*x-y

                             s.t   -x+y\leqslant 1

                                       x+y\leqslant 3

                                    -x-3*y\leqslant -3

matlab代码

% x = linprog(f,A,b)  不等式约束
f=[3 -1]
A=[-1 1;1 1;-1 -3;]
b=[1;3;-3]
[x,fval]=linprog(f,A,b)%fval为目标点的函数值

2、等式+不等式约束

x = linprog(f,A,b,Aeq,beq),f为目标函数,A为不等式约束的系数矩阵,b为不等式右侧的值,Aeq为不等式约束的系数矩阵,beq为不等式右侧的值,返回值x为最优解。

例1、目标函数       min f=-x-y/3

                             s.t   x+y\leqslant 2

                                    x+y/4\leqslant 1

                                    x-y\leqslant 2

                             -x/4-y\leqslant 1

                                  -x-y\leqslant -1

                                  -x+y\leqslant 2

                                  x+y/4= 1/2

matlab代码

%% x = linprog(f,A,b,Aeq,beq) 包含等式、不等式
f=[-1 -1/3];
A=[1 1;1 1/4;1 -1;-1/4 -1;-1 -1;-1 1;];
b=[2; 1; 2; 1; -1; 2];
Aeq=[1 1/4];
beq=1/2;
[x,fval]=linprog(f,A,b,Aeq,beq)%fval为目标点的函数值

3、规定x的下限lb和上限ub

x = linprog(f,A,b,Aeq,beq,lb,ub),f为目标函数,A为不等式约束的系数矩阵,b为不等式右侧的值,Aeq为不等式约束的系数矩阵,beq为不等式右侧的值,lb、ub分别为x的下限和上限,返回值x为最优解。

例2、目标函数       min f=2*x1+3*x2+x3

                             s.t   -x1-4*x2-2*x3\leqslant -8

                                    -3*x1-2*x2*\leqslant -6

                                    x1,x2,x3\geqslant 0

matlab代码

%% x = linprog(f,A,b,Aeq,beq,lb,ub) 
f=[2 3 1]
A=[-1 -4 -2;-3 -2 0;];
b=[-8;-6];
lb=[0;0;0];
[x,fval]=linprog(f,A,b,[],[],lb); %fval为目标点的函数值

4、设置线性规划的算法

x = linprog(f,A,b,Aeq,beq,lb,ub,options) ,f为目标函数,A为不等式约束的系数矩阵,b为不等式右侧的值,Aeq为不等式约束的系数矩阵,beq为不等式右侧的值,lb、ub分别为x的下限和上限,options为算法设置句柄,返回值x为最优解。

matlab代码

%% x = linprog(f,A,b,Aeq,beq,lb,ub,options) 
% options = optimoptions('linprog','Algorithm','interior-point'); %内点法
options = optimoptions('linprog','Algorithm','interior-point-legacy');
% options = optimoptions('linprog','Algorithm','dual-simplex');%对偶单纯形法
f=[2 3 1];
A=[-1 -4 -2;-3 -2 0;];
b=[-8;-6];
lb=[0;0;0];
[x,fval]=linprog(f,A,b,[],[],lb,[],options)%fval为目标点的函数值

三、整数规划与0 1规划函数intlinprog

intlinprog函数与linprog函数用法相同,只是多出了一个整数项设置参数。

1、不等式约束

x = intlinprog(f,intcon,A,b),f为目标函数,intcon为整数设置项,A为不等式约束的系数矩阵,b为不等式右侧的值,返回值x为最优解。

例1、目标函数       min f=3*x-y

                             s.t   -x+y\leqslant 0.5

                                       x+y\leqslant 3

                                    -x-3*y\leqslant -3

matlab代码

%% x = intlinprog(f,intcon,A,b) 整数规划
f=[3 -1]
A=[-1 1;1 1;-1 -3]
b=[0.5;3;-3]
% intcon=[1]  %变量X1为整数项
% intcon=[2]  %变量x2为整数项
intcon=[1,2]  %x1、x2都为整数项 
% intcon=[]   %没有整数项
[x,fval]=intlinprog(f,intcon,A,b)

2、等式+不等式约束

x = linprog(f,intcon,A,b,Aeq,beq),f为目标函数,A为不等式约束的系数矩阵,intcon为整数设置项,b为不等式右侧的值,Aeq为不等式约束的系数矩阵,beq为不等式右侧的值,返回值x为最优解。

例2、目标函数       min f=-3*x1-2*x2-x1

                             s.t   x1+x2+x3\leqslant 7

                                    4x1+2x2+x3=12

                                    x1,x2,x3\geqslant 0

matlab代码

%% x = intlinprog(f,intcon,A,b,Aeq,beq) 
f=[-3 -2 -1]  %目标函数系数矩阵
A=[1 1 1] %不等式约束
b=7  
Aeq=[4 2 1] %等式约束
beq=12
intcon=[1 2 3] %x1 x2 x3都为整数项
lb=zeros(3,1) %下限为0
[x,fval]=intlinprog(f,intcon,A,b,Aeq,beq,lb)

3、0-1规划

例2、目标函数       min f=-3*x1-2*x2-x3

                             s.t   x1+x2+x3\leqslant 7

                                    4x1+2x2+x3=12

                                    x1,x2\geqslant 0 整数 且为整数

                                    x3= 0或1

matlab代码

%% 0-1 规划
f=[-3 -2 -1];
A=[1 1 1];
b=7;
Aeq=[4 2 1];
beq=12;
intcon=[1 2 3];
lb=zeros(3,1); 将x3下限和上线都设置为1即可
ub=[inf;inf;1];
[x,fval]=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

四、二次规划quadprog

定义:目标函数事自变量的二次函数,约束条件为线性函数。

二次规划问题的数学模型:

min (x^T*H*x)/2+f^T*x, x\epsilon R^n  

s.t        A*x\leqslant b

            Aeq*x= beq  

            lb\leqslant x\leqslant ub

例1、目标函数f(x)=x1^2+2*x2^2-2*x1*x2-2*x1-6*x2

                         s.t   x1+x2\leqslant 2

                               -x1+x2\leqslant 2

                                x1,x2\geqslant 0

1、首先对目标函数做处理,写成系数矩阵的形式

f(x)= (x^T*H*x)/2+f^T*x

=(a11*x1^2+a21*x1*x2+a12*x1*x2+a22*x2^2)+f1*x1+f2*x2

2、写出对应的系数矩阵

a11=2,a12=-2,a21=-2,a22=4,f1=-2,f2=-6

可得H与f

matlab代码

%% 二次规划
H=[2 -2;-2 4]
f=[-2;-6;]
A=[1 1;-1 2] %不等式约束
b=[2;2]
lb=zeros(2,1) %下限
[x,favl]=quadprog(H,f,A,b,[],[],lb)

 

这篇关于MATLAB线形规划函数linprog、intlinprog与二次规划函数quadprog的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680265

相关文章

Kotlin运算符重载函数及作用场景

《Kotlin运算符重载函数及作用场景》在Kotlin里,运算符重载函数允许为自定义类型重新定义现有的运算符(如+-…)行为,从而让自定义类型能像内置类型那样使用运算符,本文给大家介绍Kotlin运算... 目录基本语法作用场景类对象数据类型接口注意事项在 Kotlin 里,运算符重载函数允许为自定义类型重

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

shell编程之函数与数组的使用详解

《shell编程之函数与数组的使用详解》:本文主要介绍shell编程之函数与数组的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录shell函数函数的用法俩个数求和系统资源监控并报警函数函数变量的作用范围函数的参数递归函数shell数组获取数组的长度读取某下的

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(