MATLAB线形规划函数linprog、intlinprog与二次规划函数quadprog

2024-02-05 08:08

本文主要是介绍MATLAB线形规划函数linprog、intlinprog与二次规划函数quadprog,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、目标函数简介

线形规划问题的数学模型:

min f(x)=Z*x , x\epsilon R^n  

s.t        A*x\leqslant b

            Aeq*x= beq  

线形规划,顾名思义就是目标函数与约束条件均为线形函数(一次函数)。

二、线形规划函数linprog

linprog函数的用法大致分为以下几种用法:

1、不等式约束

x = linprog(f,A,b)   ,f为目标函数,A为不等式约束的系数矩阵,b为不等式右侧的值,返回值x为最优解。

例1、目标函数       min f=3*x-y

                             s.t   -x+y\leqslant 1

                                       x+y\leqslant 3

                                    -x-3*y\leqslant -3

matlab代码

% x = linprog(f,A,b)  不等式约束
f=[3 -1]
A=[-1 1;1 1;-1 -3;]
b=[1;3;-3]
[x,fval]=linprog(f,A,b)%fval为目标点的函数值

2、等式+不等式约束

x = linprog(f,A,b,Aeq,beq),f为目标函数,A为不等式约束的系数矩阵,b为不等式右侧的值,Aeq为不等式约束的系数矩阵,beq为不等式右侧的值,返回值x为最优解。

例1、目标函数       min f=-x-y/3

                             s.t   x+y\leqslant 2

                                    x+y/4\leqslant 1

                                    x-y\leqslant 2

                             -x/4-y\leqslant 1

                                  -x-y\leqslant -1

                                  -x+y\leqslant 2

                                  x+y/4= 1/2

matlab代码

%% x = linprog(f,A,b,Aeq,beq) 包含等式、不等式
f=[-1 -1/3];
A=[1 1;1 1/4;1 -1;-1/4 -1;-1 -1;-1 1;];
b=[2; 1; 2; 1; -1; 2];
Aeq=[1 1/4];
beq=1/2;
[x,fval]=linprog(f,A,b,Aeq,beq)%fval为目标点的函数值

3、规定x的下限lb和上限ub

x = linprog(f,A,b,Aeq,beq,lb,ub),f为目标函数,A为不等式约束的系数矩阵,b为不等式右侧的值,Aeq为不等式约束的系数矩阵,beq为不等式右侧的值,lb、ub分别为x的下限和上限,返回值x为最优解。

例2、目标函数       min f=2*x1+3*x2+x3

                             s.t   -x1-4*x2-2*x3\leqslant -8

                                    -3*x1-2*x2*\leqslant -6

                                    x1,x2,x3\geqslant 0

matlab代码

%% x = linprog(f,A,b,Aeq,beq,lb,ub) 
f=[2 3 1]
A=[-1 -4 -2;-3 -2 0;];
b=[-8;-6];
lb=[0;0;0];
[x,fval]=linprog(f,A,b,[],[],lb); %fval为目标点的函数值

4、设置线性规划的算法

x = linprog(f,A,b,Aeq,beq,lb,ub,options) ,f为目标函数,A为不等式约束的系数矩阵,b为不等式右侧的值,Aeq为不等式约束的系数矩阵,beq为不等式右侧的值,lb、ub分别为x的下限和上限,options为算法设置句柄,返回值x为最优解。

matlab代码

%% x = linprog(f,A,b,Aeq,beq,lb,ub,options) 
% options = optimoptions('linprog','Algorithm','interior-point'); %内点法
options = optimoptions('linprog','Algorithm','interior-point-legacy');
% options = optimoptions('linprog','Algorithm','dual-simplex');%对偶单纯形法
f=[2 3 1];
A=[-1 -4 -2;-3 -2 0;];
b=[-8;-6];
lb=[0;0;0];
[x,fval]=linprog(f,A,b,[],[],lb,[],options)%fval为目标点的函数值

三、整数规划与0 1规划函数intlinprog

intlinprog函数与linprog函数用法相同,只是多出了一个整数项设置参数。

1、不等式约束

x = intlinprog(f,intcon,A,b),f为目标函数,intcon为整数设置项,A为不等式约束的系数矩阵,b为不等式右侧的值,返回值x为最优解。

例1、目标函数       min f=3*x-y

                             s.t   -x+y\leqslant 0.5

                                       x+y\leqslant 3

                                    -x-3*y\leqslant -3

matlab代码

%% x = intlinprog(f,intcon,A,b) 整数规划
f=[3 -1]
A=[-1 1;1 1;-1 -3]
b=[0.5;3;-3]
% intcon=[1]  %变量X1为整数项
% intcon=[2]  %变量x2为整数项
intcon=[1,2]  %x1、x2都为整数项 
% intcon=[]   %没有整数项
[x,fval]=intlinprog(f,intcon,A,b)

2、等式+不等式约束

x = linprog(f,intcon,A,b,Aeq,beq),f为目标函数,A为不等式约束的系数矩阵,intcon为整数设置项,b为不等式右侧的值,Aeq为不等式约束的系数矩阵,beq为不等式右侧的值,返回值x为最优解。

例2、目标函数       min f=-3*x1-2*x2-x1

                             s.t   x1+x2+x3\leqslant 7

                                    4x1+2x2+x3=12

                                    x1,x2,x3\geqslant 0

matlab代码

%% x = intlinprog(f,intcon,A,b,Aeq,beq) 
f=[-3 -2 -1]  %目标函数系数矩阵
A=[1 1 1] %不等式约束
b=7  
Aeq=[4 2 1] %等式约束
beq=12
intcon=[1 2 3] %x1 x2 x3都为整数项
lb=zeros(3,1) %下限为0
[x,fval]=intlinprog(f,intcon,A,b,Aeq,beq,lb)

3、0-1规划

例2、目标函数       min f=-3*x1-2*x2-x3

                             s.t   x1+x2+x3\leqslant 7

                                    4x1+2x2+x3=12

                                    x1,x2\geqslant 0 整数 且为整数

                                    x3= 0或1

matlab代码

%% 0-1 规划
f=[-3 -2 -1];
A=[1 1 1];
b=7;
Aeq=[4 2 1];
beq=12;
intcon=[1 2 3];
lb=zeros(3,1); 将x3下限和上线都设置为1即可
ub=[inf;inf;1];
[x,fval]=intlinprog(f,intcon,A,b,Aeq,beq,lb,ub)

四、二次规划quadprog

定义:目标函数事自变量的二次函数,约束条件为线性函数。

二次规划问题的数学模型:

min (x^T*H*x)/2+f^T*x, x\epsilon R^n  

s.t        A*x\leqslant b

            Aeq*x= beq  

            lb\leqslant x\leqslant ub

例1、目标函数f(x)=x1^2+2*x2^2-2*x1*x2-2*x1-6*x2

                         s.t   x1+x2\leqslant 2

                               -x1+x2\leqslant 2

                                x1,x2\geqslant 0

1、首先对目标函数做处理,写成系数矩阵的形式

f(x)= (x^T*H*x)/2+f^T*x

=(a11*x1^2+a21*x1*x2+a12*x1*x2+a22*x2^2)+f1*x1+f2*x2

2、写出对应的系数矩阵

a11=2,a12=-2,a21=-2,a22=4,f1=-2,f2=-6

可得H与f

matlab代码

%% 二次规划
H=[2 -2;-2 4]
f=[-2;-6;]
A=[1 1;-1 2] %不等式约束
b=[2;2]
lb=zeros(2,1) %下限
[x,favl]=quadprog(H,f,A,b,[],[],lb)

 

这篇关于MATLAB线形规划函数linprog、intlinprog与二次规划函数quadprog的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/680265

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MySQL中REPLACE函数与语句举例详解

《MySQL中REPLACE函数与语句举例详解》在MySQL中REPLACE函数是一个用于处理字符串的强大工具,它的主要功能是替换字符串中的某些子字符串,:本文主要介绍MySQL中REPLACE函... 目录一、REPLACE()函数语法:参数说明:功能说明:示例:二、REPLACE INTO语句语法:参数

python中update()函数的用法和一些例子

《python中update()函数的用法和一些例子》update()方法是字典对象的方法,用于将一个字典中的键值对更新到另一个字典中,:本文主要介绍python中update()函数的用法和一些... 目录前言用法注意事项示例示例 1: 使用另一个字典来更新示例 2: 使用可迭代对象来更新示例 3: 使用

浅谈MySQL的容量规划

《浅谈MySQL的容量规划》进行MySQL的容量规划是确保数据库能够在当前和未来的负载下顺利运行的重要步骤,容量规划包括评估当前资源使用情况、预测未来增长、调整配置和硬件资源等,感兴趣的可以了解一下... 目录一、评估当前资源使用情况1.1 磁盘空间使用1.2 内存使用1.3 CPU使用1.4 网络带宽二、

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

MySQL中DATE_FORMAT时间函数的使用小结

《MySQL中DATE_FORMAT时间函数的使用小结》本文主要介绍了MySQL中DATE_FORMAT时间函数的使用小结,用于格式化日期/时间字段,可提取年月、统计月份数据、精确到天,对大家的学习或... 目录前言DATE_FORMAT时间函数总结前言mysql可以使用DATE_FORMAT获取日期字段