Pandas.DataFrame.cumsum() 累积和 详解 含代码 含测试数据集 随Pandas版本持续更新

本文主要是介绍Pandas.DataFrame.cumsum() 累积和 详解 含代码 含测试数据集 随Pandas版本持续更新,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于Pandas版本: 本文基于 pandas2.2.0 编写。

关于本文内容更新: 随着pandas的stable版本更迭,本文持续更新,不断完善补充。

传送门: Pandas API参考目录

传送门: Pandas 版本更新及新特性

传送门: Pandas 由浅入深系列教程

本节目录

  • Pandas.DataFrame.cumsum()
    • 计算公式:
    • 语法:
    • 返回值:
    • 参数说明:
      • axis 指定计算方向(行或列)
      • skipna 忽略缺失值
      • *args,**kwargs
    • 相关方法:
    • 示例:
      • 例1:如果是 `Series` 始终保持 `axis=0`,即计算 `Series` 所有元素的累积和。
      • 例2:字符串求累和,相当于是字符串拼接
      • 例3、计算每列累积和
      • 例4、计算每行累积和
      • 例5、默认会跳过缺失值,以缺失值上面的最近有效值,进行后面的计算
      • 例6、如果不忽略缺失值,后面所有的结果,将都是缺失值。

Pandas.DataFrame.cumsum()

Pandas.DataFrame.cumsum 方法用于返回行或列每一个元素与前面所有元素的累积和

⚠️ 注意 :

  1. 字符串可以求累积和,相当于字符串拼接。 例2

    • 字符串不能和任何其他类型数据混用,比如 缺失值、数值,否则报错 TypeError

计算公式:

  • Pandas累积和计算公式:

    S i = x 1 + x 2 + … + x i S_i = x_1 + x_2 + \ldots + x_i Si=x1+x2++xi

    S i S_i Si 表示当前位置的累积和, x 1 + … + x i x_1+ \ldots + x_i x1++xi 表示从起始位置加到当前位置。

语法:

DataFrame.cumsum(axis=None, skipna=True, *args, **kwargs)

返回值:

  • Series or DataFrame

参数说明:

axis 指定计算方向(行或列)

  • axis : {0 or ‘index’, 1 or ‘columns’}, default 0

    axis 参数,用于指定计算方向,即按行计算或按列计算累积和:

    • 如果是 Series 此参数无效,将始终保持 axis=0,即计算整列的累积和。例1
    • 如果是 DataFrame 默认为 axis=0 即计算每一列的累积和。并有以下参值可选:
      • 0 or ‘index’: 计算每列的累积和。 例3
      • 1 or ‘columns’: 计算每行的累积和。例4

skipna 忽略缺失值

  • skipna : bool, default True >

    skipna 参数,用于指定求累积和的时候是否忽略缺失值,默认 skipna=True 表示忽略缺失值:

    • True: 忽略缺失值。当遇到缺失值,会跳过缺失值,以缺失值上面的最近有效值继续后面的计算。 例5
    • False: 不忽略缺失。但是后面的所有结果将都是缺失值。例6

*args,**kwargs

  • 为了保持与 Numpy 的兼容性而保留的参数,一般不需要传递任何内容。

相关方法:

➡️ 相关方法


  • Series.cumsum

    Series 累积和

  • DataFrame.sum

    求和

  • DataFrame.cummax

    累积最大值

  • DataFrame.cummin

    累积最小值

  • DataFrame.cumprod

    累积乘积

示例:

测试文件下载:

本文所涉及的测试文件,如有需要,可在文章顶部的绑定资源处下载。

若发现文件无法下载,应该是资源包有内容更新,正在审核,请稍后再试。或站内私信作者索要。

测试文件下载位置.png

测试文件下载位置

例1:如果是 Series 始终保持 axis=0,即计算 Series 所有元素的累积和。

import numpy as np
import pandas as pds = pd.Series([24.0, np.nan, 21.0, 33, 26], name="age")
s.cumsum()
0     24.0
1      NaN
2     45.0
3     78.0
4    104.0
Name: age, dtype: float64

例2:字符串求累和,相当于是字符串拼接

import numpy as np
import pandas as pddf = pd.DataFrame({"第一列": ["一", "二", "三"], "第二列": ["四", "五", "六"]})df.cumsum()
第一列第二列
0
1一二四五
2一二三四五六

例3、计算每列累积和

import numpy as np
import pandas as pddf = pd.DataFrame([[2.0, 1.0],[3.0, np.nan],[1.0, 0.0]],columns=list('AB'))df.cumsum()
AB
02.01.0
15.0NaN
26.01.0

例4、计算每行累积和

import numpy as np
import pandas as pddf = pd.DataFrame([[2.0, 1.0, 3.0], [3.0, np.nan, 5.0], [1.0, 1.0, 1.0], [1.0, 0.0, 2.0]],columns=list("ABC"),
)df.cumsum(axis=1)
ABC
02.03.06.0
13.0NaN8.0
21.02.03.0
31.01.03.0

例5、默认会跳过缺失值,以缺失值上面的最近有效值,进行后面的计算

import numpy as np
import pandas as pddf = pd.DataFrame([[2.0, 1.0],[3.0, np.nan],[1.0, 1.0],[1.0, 0.0]],columns=list('AB'))df.cumsum()
AB
02.01.0
15.0NaN
26.02.0
37.02.0

例6、如果不忽略缺失值,后面所有的结果,将都是缺失值。

import numpy as np
import pandas as pddf = pd.DataFrame([[2.0, 1.0],[3.0, np.nan],[1.0, 1.0],[1.0, 0.0]],columns=list('AB'))df.cumsum(skipna=False)
AB
02.01.0
15.0NaN
26.0NaN
37.0NaN

这篇关于Pandas.DataFrame.cumsum() 累积和 详解 含代码 含测试数据集 随Pandas版本持续更新的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/678692

相关文章

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

详解MySQL中DISTINCT去重的核心注意事项

《详解MySQL中DISTINCT去重的核心注意事项》为了实现查询不重复的数据,MySQL提供了DISTINCT关键字,它的主要作用就是对数据表中一个或多个字段重复的数据进行过滤,只返回其中的一条数据... 目录DISTINCT 六大注意事项1. 作用范围:所有 SELECT 字段2. NULL 值的特殊处

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

SQL BETWEEN 语句的基本用法详解

《SQLBETWEEN语句的基本用法详解》SQLBETWEEN语句是一个用于在SQL查询中指定查询条件的重要工具,它允许用户指定一个范围,用于筛选符合特定条件的记录,本文将详细介绍BETWEEN语... 目录概述BETWEEN 语句的基本用法BETWEEN 语句的示例示例 1:查询年龄在 20 到 30 岁

Java Spring ApplicationEvent 代码示例解析

《JavaSpringApplicationEvent代码示例解析》本文解析了Spring事件机制,涵盖核心概念(发布-订阅/观察者模式)、代码实现(事件定义、发布、监听)及高级应用(异步处理、... 目录一、Spring 事件机制核心概念1. 事件驱动架构模型2. 核心组件二、代码示例解析1. 事件定义

CSS place-items: center解析与用法详解

《CSSplace-items:center解析与用法详解》place-items:center;是一个强大的CSS简写属性,用于同时控制网格(Grid)和弹性盒(Flexbox)... place-items: center; 是一个强大的 css 简写属性,用于同时控制 网格(Grid) 和 弹性盒(F

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2