力扣 第 123 场双周赛 解题报告 | 珂学家 | 二维偏序+单调队列优化

2024-02-04 12:20

本文主要是介绍力扣 第 123 场双周赛 解题报告 | 珂学家 | 二维偏序+单调队列优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

image.png

执手看歌敲金钗,笑语落珠明眸睐。
忽然蝴蝶春风满,焉教冷镜瘦朱颜。


整体评价

T3是基于map的前缀和的变形题,T4是二维偏序的一道应用题。

题外话,力扣还是实现N久之前的承诺了,命名权奖励,赞一个。


T1. 三角形类型 II

思路: 模拟

class Solution {public String triangleType(int[] nums) {// 先判合法性Arrays.sort(nums);if (nums[0] + nums[1] <= nums[2]) return "none";if (nums[0] == nums[1] && nums[1] == nums[2]) {return "equilateral";} else if (nums[0] == nums[1] || nums[1] == nums[2]) {return "isosceles";} else {return "scalene";}}
}

T2. 人员站位的方案数 I

和T4一起讲


T3. 最大好子数组和

思路: 基于map的前缀和应用

这边需要以值作为key, value为最小的前缀和(需向前偏移一位)

更新的时候,需要分类讨论,v为当前值

  • v − k v - k vk
  • v + k v + k v+k
class Solution {public long maximumSubarraySum(int[] nums, int k) {long inf = Long.MIN_VALUE / 10;long res = inf;// 维护最小的前缀和Map<Long, Long> minMap = new HashMap<>();long acc = 0;for (int i = 0; i < nums.length; i++) {long v = nums[i];acc += v;if (minMap.containsKey(v - k)) {res = Math.max(acc - minMap.get(v - k), res);}if (minMap.containsKey(v + k)) {res = Math.max(acc - minMap.get(v + k), res);}// 更新if (!minMap.containsKey(v) || acc - v < minMap.get(v)) {minMap.put(v, acc - v);}}return res == inf ? 0 : res;}}

T4. 人员站位的方案数 II

思路: 二维偏序 + 枚举

对于偏序题,一般先固定一个维度

  1. 先按x坐标从小到大排序,
  2. 再按照y坐标从大到小排序

因为题目指定左上角,右下角

然后枚举左右端点,check是否满足需求即可。

在枚举的过程中,可以引入

单调队列优化 单调队列优化 单调队列优化

实际上只要维护最接近左端点y坐标(严格小于等于)的单变量即可, 递增状态

这样整个时间复杂度可以降为

  • 排序 O ( n l o g n ) O(nlogn) O(nlogn)
  • 枚举左右端点 O ( n 2 ) O(n^2) O(n2)

最终为 O ( n 2 ) O(n^2) O(n2)

class Solution {public int numberOfPairs(int[][] points) {// 按x从小到大,按y从大到小Arrays.sort(points, Comparator.comparingInt((int[] p) -> p[0]).thenComparingInt(p -> -p[1]));int res = 0;int n = points.length;for (int i = 0; i < n; i++) {// 维护最接近左端点y值的值(严格小于等于)int nearest = Integer.MIN_VALUE;for (int j = i + 1; j < n; j++) {if (points[j][1] <= points[i][1]) {if (points[j][1] > nearest) {res++;nearest = points[j][1];}}}}return res;}
}

  • 离散化+二维前缀和 (补充)

这个解法应该更加的直观

class Solution {// 离散化Map<Integer, Integer> discrete(List<Integer> ps) {TreeSet<Integer> range = new TreeSet<>(ps);Map<Integer, Integer> ids = new HashMap<>();int ptr = 0;for (var k: range) {ids.put(k, ptr++);}return ids;}public int numberOfPairs(int[][] points) {int n = points.length;int res = 0;Map<Integer, Integer> xs = discrete(Arrays.stream(points).map(p -> p[0]).collect(Collectors.toList()));Map<Integer, Integer> ys = discrete(Arrays.stream(points).map(p -> p[1]).collect(Collectors.toList()));int h = ys.size(), w = xs.size();int[][] area = new int[h][w];for (int[] p: points) {area[ys.get(p[1])][xs.get(p[0])] = 1;}int[][] pre = new int[h + 1][w + 1];for (int i = 0; i < h; i++) {for (int j = 0; j < w; j++) {pre[i + 1][j + 1] = pre[i + 1][j] + pre[i][j + 1] - pre[i][j] + area[i][j];}}for (int i = 0; i < n; i++) {for (int j = 0; j < n; j++) {if (i == j) continue;if (points[i][0] <= points[j][0] && points[i][1] >= points[j][1]) {int ty = ys.get(points[i][1]), by = ys.get(points[j][1]);int tx = xs.get(points[j][0]), bx = xs.get(points[i][0]);int s = pre[ty + 1][tx + 1] - pre[ty + 1][bx] - pre[by][tx + 1] + pre[by][bx];if (s == 2) {res ++;}}}}return res;}
}

写在最后

image.png

这篇关于力扣 第 123 场双周赛 解题报告 | 珂学家 | 二维偏序+单调队列优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677489

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

golang实现延迟队列(delay queue)的两种实现

《golang实现延迟队列(delayqueue)的两种实现》本文主要介绍了golang实现延迟队列(delayqueue)的两种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录1 延迟队列:邮件提醒、订单自动取消2 实现2.1 simplChina编程e简单版:go自带的time

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据