Python 优先队列:heapq库的使用

2024-02-04 09:50

本文主要是介绍Python 优先队列:heapq库的使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的个人主页
🍊个人网站:小嗷犬的技术小站
🥭个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。


本文目录

    • 简介
    • heapq 库的使用
      • heapify
      • heappush
      • heappop
      • heapreplace
      • heappushpop
      • merge
      • nlargest
      • nsmallest
    • 例题
      • Title
        • Time Limit
        • Memory Limit
        • Problem Description
        • Input
        • Output
        • Sample Input
        • Sample Onput
        • Note
        • Source
        • Solution


简介

heapq 库是 Python 标准库中的一部分,它提供了一些堆操作的函数,可以用来实现优先队列。

优先队列是一种特殊的队列,它的每个元素都有一个优先级,元素的出队顺序是按照优先级从高到低的顺序进行的。优先队列的实现有多种方式,其中最常用的是堆。

堆是一种特殊的树,有两种类型,分别是最大堆和最小堆。最大堆的每个节点的值都大于或等于其子节点的值,最小堆的每个节点的值都小于或等于其子节点的值。堆的根节点是堆中的最大值(最小堆的根节点是最小值)。

heapq 的大部分操作都是基于最小堆实现的,通过将元素取相反数,可以实现最大堆。


heapq 库的使用

heapq 库提供了 heapifyheappushheappopheapreplaceheappushpopmergenlargestnsmallest 等函数,用于堆的操作。

heapify

heapify 函数用于原地将列表转换为最小堆,时间复杂度为 O ( n ) O(n) O(n)

函数原型如下:

heapq.heapify(x)

其中,x 是一个列表。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
print(x)
# [0, 1, 2, 6, 3, 5, 4, 7, 8, 9]

heappush

heappush 函数用于将元素插入到最小堆中,并保持堆的不变性,时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)

函数原型如下:

heapq.heappush(heap, item)

其中,heap 是一个最小堆,item 是要插入的元素。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
heapq.heappush(x, 2.5)
print(x)
# [0, 1, 2, 6, 2.5, 5, 4, 7, 8, 9, 3]

heappop

heappop 函数用于弹出最小堆的根节点,并保持堆的不变性,时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)。如果堆为空,则抛出 IndexError 异常。

函数原型如下:

heapq.heappop(heap)

其中,heap 是一个最小堆。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
print(heapq.heappop(x))
# 0
print(x)
# [1, 3, 2, 6, 9, 5, 4, 7, 8]

使用 heap[0] 可以访问最小堆的根节点,但是不会弹出它。

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
print(x[0])
# 0
print(x)
# [0, 1, 2, 6, 3, 5, 4, 7, 8, 9]

heapreplace

heapreplace 函数用于弹出最小堆的根节点,并将新元素插入到堆中,保持堆的大小和不变性,时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)。如果堆为空,则抛出 IndexError 异常。它比先调用 heappop 再调用 heappush 效率更高。

函数原型如下:

heapq.heapreplace(heap, item)

其中,heap 是一个最小堆,item 是要插入的元素。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
heapq.heapreplace(x, -1)
print(x)
# [-1, 1, 2, 6, 3, 5, 4, 7, 8, 9]

heappushpop

heappushpop 函数用于将元素插入到最小堆中,并弹出最小堆的根节点,保持堆的大小和不变性,时间复杂度为 O ( log ⁡ n ) O(\log n) O(logn)。如果堆为空,则抛出 IndexError 异常。它比先调用 heappush 再调用 heappop 效率更高。

函数原型如下:

heapq.heappushpop(heap, item)

其中,heap 是一个最小堆,item 是要插入的元素。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
heapq.heapify(x)
heapq.heappushpop(x, -1)
print(x)
# [0, 1, 2, 6, 3, 5, 4, 7, 8, 9]

merge

merge 函数是一个基于堆的通用功能函数,用于合并多个有序的序列,返回一个新的有序的序列,时间复杂度为 O ( n log ⁡ k ) O(n \log k) O(nlogk),其中 n n n 是所有序列的元素个数, k k k 是序列的个数。函数返回一个已排序值的迭代器,可以使用 list 函数将其转换为列表。

函数原型如下:

heapq.merge(*iterables, key=None, reverse=False)

其中,iterables 是多个有序的序列,key 是一个函数,用于从序列中提取比较的键,reverse 是一个布尔值,表示是否反转序列。

示例:

import heapq
x = [1, 3, 5, 7, 9]
y = [2, 4, 6, 8, 10]
z = heapq.merge(x, y)
print(list(z))
# [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

nlargest

nlargest 函数是一个基于堆的通用功能函数,用于返回最大的 n n n 个元素,时间复杂度为 O ( n log ⁡ k ) O(n \log k) O(nlogk),其中 n n n 是序列的长度, k k k 是要返回的元素个数。如果 n n n 小于 k k k,则返回整个序列。

函数原型如下:

heapq.nlargest(n, iterable, key=None)

其中,n 是要返回的元素个数,iterable 是一个序列,key 是一个函数,用于从序列中提取比较的键。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
print(heapq.nlargest(3, x))
# [9, 8, 7]

nlargest 函数在 n n n 值较小时性能较好。对于较大的 n n n,使用 sorted(iterable, reverse=True)[:n] 性能更好。当 n = 1 n=1 n=1 时,使用 max(iterable) 函数性能更好。

nsmallest

nsmallest 函数是一个基于堆的通用功能函数,用于返回最小的 n n n 个元素,时间复杂度为 O ( n log ⁡ k ) O(n \log k) O(nlogk),其中 n n n 是序列的长度, k k k 是要返回的元素个数。如果 n n n 小于 k k k,则返回整个序列。

函数原型如下:

heapq.nsmallest(n, iterable, key=None)

其中,n 是要返回的元素个数,iterable 是一个序列,key 是一个函数,用于从序列中提取比较的键。

示例:

import heapq
x = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
print(heapq.nsmallest(3, x))
# [0, 1, 2]

nsmallest 函数在 n n n 值较小时性能较好。对于较大的 n n n,使用 sorted(iterable)[:n] 性能更好。当 n = 1 n=1 n=1 时,使用 min(iterable) 函数性能更好。


例题

Title

CodeForces 1800 C2. Powering the Hero (hard version)

Time Limit

2 seconds

Memory Limit

256 megabytes

Problem Description

This is a hard version of the problem. It differs from the easy one only by constraints on n n n and t t t.

There is a deck of n n n cards, each of which is characterized by its power. There are two types of cards:

You can do the following with the deck:

Your task is to use such actions to gather an army with the maximum possible total power.

Input

The first line of input data contains single integer t t t ( 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104) — the number of test cases in the test.

The first line of each test case contains one integer n n n ( 1 ≤ n ≤ 2 ⋅ 1 0 5 1 \le n \le 2 \cdot 10^5 1n2105) — the number of cards in the deck.

The second line of each test case contains n n n integers s 1 , s 2 , … , s n s_1, s_2, \dots, s_n s1,s2,,sn ( 0 ≤ s i ≤ 1 0 9 0 \le s_i \le 10^9 0si109) — card powers in top-down order.

It is guaranteed that the sum of n n n over all test cases does not exceed 2 ⋅ 1 0 5 2 \cdot 10^5 2105.

Output

Output t t t numbers, each of which is the answer to the corresponding test case — the maximum possible total power of the army that can be achieved.

Sample Input
5
5
3 3 3 0 0
6
0 3 3 0 0 3
7
1 2 3 0 4 5 0
7
1 2 5 0 4 3 0
5
3 1 0 0 4
Sample Onput
6
6
8
9
4
Note

In the first sample, you can take bonuses 1 1 1 and 2 2 2. Both hero cards will receive 3 3 3 power. If you take all the bonuses, one of them will remain unused.

In the second sample, the hero’s card on top of the deck cannot be powered up, and the rest can be powered up with 2 2 2 and 3 3 3 bonuses and get 6 6 6 total power.

In the fourth sample, you can take bonuses 1 1 1, 2 2 2, 3 3 3, 5 5 5 and skip the bonus 6 6 6, then the hero 4 4 4 will be enhanced with a bonus 3 3 3 by 5 5 5, and the hero 7 7 7 with a bonus 5 5 5 by 4 4 4. 4 + 5 = 9 4+5=9 4+5=9.

Source

CodeForces 1800 C2. Powering the Hero (hard version)

Solution

每张英雄牌的最大力量为该英雄牌之前出现的未被使用最大奖励牌的力量。对于具体是哪张英雄牌使用了哪张奖励牌,我们是不关心的,只需要统计他们最大力量即可。

import heapqfor _ in range(int(input())):n = int(input())s = map(int, input().split())h = []ans = 0for i in s:if i == 0 and h:ans -= heapq.heappop(h)else:heapq.heappush(h, -i)print(ans)

这篇关于Python 优先队列:heapq库的使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/677084

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4