智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法)

本文主要是介绍智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

(1)在上一节中,我们学习了对图像的固定二值化处理,可以将原始图像处理成二值化的黑白图像,这里面的本质就是将原来的二维数组进行了处理,处理后的二维数组里的元素都是0和255两个值。

(2)固定阈值二值化的使用是比赛过程中,每一处地方的二值化阈值都是同一个值,而赛道的不同地方以同一个阈值二值化出来的图像可能不合适,甚至不能正常循迹。

(3)为了适应赛道上的不同环境,很多同学会采用动态二值化,即对于采集到的不同图像,通过算法计算出合适的阈值来进行二值化处理,最后的二值化效果可能会比固定阈值化好一些(因为也有不少同学在比赛中采用固定阈值二值化处理,最后拿到了国奖,所以哪个方法更好,还真不好说,主要根据实际情况看自己的作品)。

(4)毋庸置疑,大津法会增加算法处理,处理时间肯定比固定阈值二值化长。

概念

对于图像处理入门,建议大家可以去看这篇文章

详解-OTUS(大津法-最大类间方差)原理及C语言代码实现-CSDN博客

但是,你不想看也没关系,请继续看我后面的内容,你只需要理解到一个点:大津法就是一个对二维数组处理后会得到一个值的算法,而这个值就是我们二值化要的阈值。想要搞清楚大津法原理,请移步上面的文章进行学习,我这里只进行简要介绍。

大津法

        大津法阈值采用最大类间方差的原理,适合于图像灰度分布整体呈现“双峰”的情况。大津法会自动找出一个阈值,使得分割后的两部分类间方差最大。

        最大类间方差是由日本学者大津(Nobuyuki Otsu)于1979年提出,是一种确定图像二值化分割阈值的算法。算法假设图像像素能够根据全局阈值,被分成背景[background]和目标[objects]两部分。然后,计算该最佳阈值来区分这两类像素,使得两类像素区分度最大。

大津法阈值采用最大类间方差的原理,适合于图像灰度分布整体呈现“双峰”的情况。大津法会自动找出一个阈值,使得分割后的两部分类间方差最大。

特性:

  1. 大津法对噪音十分敏感,在处理之前应对图片进行去噪处理。如果图像有存在局部噪声,则会影响大津法的判断
  2. 当目标与背景的面积比例悬殊的时候,类间方差函数可能呈现双峰或者多峰,这个时候 大津法的效果不好

(1)双峰图像,目标和背景面积差距不大,可以很好的判断,如下:

(2)当图像中的目标与背景的面积相差很大时,灰度直方图没有明显的双峰,或者两个峰的大小相差很大,分割效果不佳:

代码实现

一般大津法代码如下:

(你只需要将我的代码复制粘贴到images.c文件中,把这个函数在cpu1.c中调用即可)

images.c

#include "zf_common_headfile.h"uint8  mt9v03x_image_BandW[MT9V03X_H][MT9V03X_W];/*begin  大津法比赛   begin*/
//快速大津法二值化 pixelSum = width * height/4;
//-------------------------------------------------------------------------------------------------------------------
//  @brief      快速大津
//  @return     uint8
//  @since      v1.1
//  Sample usage:   OTSU_Threshold = otsuThreshold(mt9v03x_image_dvp[0]);//大津法阈值
//-------------------------------------------------------------------------------------------------------------------
uint8 otsuThreshold_fast(uint8 *image)   //注意计算阈值的一定要是原图像
{
#define GrayScale 256int Pixel_Max=0;int Pixel_Min=255;uint16 width = MT9V03X_W;   //宽100uint16 height = MT9V03X_H;  //高80int pixelCount[GrayScale];  //各像素GrayScale的个数pixelCount 一维数组float pixelPro[GrayScale];  //各像素GrayScale所占百分比pixelPro 一维数组int i, j, pixelSum = width * height/4;  //pixelSum是获取总的图像像素个数的1/4,相应下面轮询时高和宽都是以2为单位自增uint8 threshold = 0;
//    uint8 last_threshold = 0;uint8* data = image;  //指向像素数据的指针//清零for (i = 0; i < GrayScale; i++){pixelCount[i] = 0;pixelPro[i] = 0;}uint32 gray_sum=0;  //每次执行到这会将gray_sum清零//统计灰度级中每个像素在整幅图像中的个数for (i = 0; i < height; i+=2)   //高{for (j = 0; j < width; j+=2)    //宽{pixelCount[(int)data[i * width + j]]++;  //将当前的点的像素值作为计数数组的下标gray_sum+=(int)data[i * width + j];       //灰度值总和if(data[i * width + j]>Pixel_Max)   Pixel_Max=data[i * width + j];if(data[i * width + j]<Pixel_Min)   Pixel_Min=data[i * width + j];}}//计算每个像素值的点在整幅图像中的比例for (i = Pixel_Min; i < Pixel_Max; i++){pixelPro[i] = (float)pixelCount[i] / pixelSum;}//遍历灰度级[0,255]float w0, w1, u0tmp, u1tmp, u0, u1, u, deltaTmp, deltaMax = 0;w0 = w1 = u0tmp = u1tmp = u0 = u1 = u = deltaTmp = 0;for (j = Pixel_Min; j < Pixel_Max; j++){w0 += pixelPro[j];  //背景部分每个灰度值的像素点所占比例之和   即背景部分的比例u0tmp += j * pixelPro[j];  //背景部分 每个灰度值的点的比例 *灰度值w1=1-w0;u1tmp=gray_sum/pixelSum-u0tmp;u0 = u0tmp / w0;              //背景平均灰度u1 = u1tmp / w1;              //前景平均灰度u = u0tmp + u1tmp;            //全局平均灰度deltaTmp = (float)(w0 *w1* (u0 - u1)* (u0 - u1)) ;if (deltaTmp > deltaMax){deltaMax = deltaTmp;threshold = (uint8)j;}if (deltaTmp < deltaMax){break;}}return threshold;
}
/*end  大津法比赛   end*//*begin  大津法学习   begin*/
//------------------摄像头参数--------------//
uint8 image_threshold = 46;  //图像阈值 0~255
uint8 dis_image[60][80];uint8 otsuThreshold(uint8 *image, uint16 width, uint16 height)
{#define GrayScale 256int pixelCount[GrayScale] = {0};//每个灰度值所占像素个数float pixelPro[GrayScale] = {0};//每个灰度值所占总像素比例int i,j;int Sumpix = width * height;   //总像素点uint8 threshold = 0;uint8* data = image;  //指向像素数据的指针//统计灰度级中每个像素在整幅图像中的个数for (i = 0; i < height; i++){for (j = 0; j < width; j++){pixelCount[(int)data[i * width + j]]++;  //将像素值作为计数数组的下标//   pixelCount[(int)image[i][j]]++;    若不用指针用这个}}float u = 0;for (i = 0; i < GrayScale; i++){pixelPro[i] = (float)pixelCount[i] / Sumpix;   //计算每个像素在整幅图像中的比例u += i * pixelPro[i];  //总平均灰度}float maxVariance=0.0;  //最大类间方差float w0 = 0, avgValue  = 0;  //w0 前景比例 ,avgValue 前景平均灰度for(i = 0; i < 256; i++)     //每一次循环都是一次完整类间方差计算 (两个for叠加为1个){w0 += pixelPro[i];  //假设当前灰度i为阈值, 0~i 灰度像素所占整幅图像的比例即前景比例avgValue  += i * pixelPro[i];float variance = pow((avgValue/w0 - u), 2) * w0 /(1 - w0);    //类间方差if(variance > maxVariance){maxVariance = variance;threshold = (uint8)i;}}return threshold;
}/*end  大津法学习   end*///图像二值化
//0 - 255
//黑 - 白
void Set_image_towvalues(uint8 value)
{uint8 temp_valude;//暂存灰度值for(uint8 i = 0;i < MT9V03X_H;i++)//高{for(uint8 j = 0;j < MT9V03X_W;j++)//宽{temp_valude = mt9v03x_image[i][j];if(temp_valude < value){mt9v03x_image_BandW[i][j] = 0;//黑}else{mt9v03x_image_BandW[i][j] = 255;//白}}}
}

images.h

#ifndef CODE_IMAGES_H_
#define CODE_IMAGES_H_extern uint8  mt9v03x_image_BandW[MT9V03X_H][MT9V03X_W];void Set_image_towvalues(uint8 value);
uint8 otsuThreshold(uint8 *image, uint16 width, uint16 height);
uint8 otsuThreshold_fast(uint8 *image);
#endif /* CODE_IMAGES_H_ */

但是不优化大津法的代码,图像处理时间较长,所以大家又将“大津法”优化成了“快速大津法”,代码也在上面公布了,照我如下调用即可。

cpu1.c

void core1_main(void)
{disable_Watchdog();                     // 关闭看门狗interrupt_global_enable(0);             // 打开全局中断// 此处编写用户代码 例如外设初始化代码等mt9v03x_init();//初始化摄像头// 此处编写用户代码 例如外设初始化代码等cpu_wait_event_ready();                 // 等待所有核心初始化完毕while (TRUE){// 此处编写需要循环执行的代码TFT180_SHOW();if(mt9v03x_finish_flag)     //一幅图像完全采集完毕后,再进行图像的显示判断和显示{//Set_image_towvalues(150); //固定阈值二值化BandW_threshold = otsuThreshold_fast(mt9v03x_image[0]);//大津法得到动态阈值BandW_thresholdSet_image_towvalues(BandW_threshold); //动态阈值二值化得到二维数组mt9v03x_image_BandWtft180_displayimage03x(mt9v03x_image_BandW[0],MT9V03X_W,MT9V03X_H);//显示二值化后的图像mt9v03x_finish_flag = 0;//图像显示完成后才对标志位清零}// 此处编写需要循环执行的代码}
}

通过调用大津法处理函数,将原始图像进行动态阈值二值化处理,也是会在显示屏上得到黑白图像,固定阈值二值化和动态阈值二值化处理哪个效果好,还得看实际情况。

这篇关于智能汽车竞赛摄像头处理(3)——动态阈值二值化(大津法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/676714

相关文章

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

电脑提示xlstat4.dll丢失怎么修复? xlstat4.dll文件丢失处理办法

《电脑提示xlstat4.dll丢失怎么修复?xlstat4.dll文件丢失处理办法》长时间使用电脑,大家多少都会遇到类似dll文件丢失的情况,不过,解决这一问题其实并不复杂,下面我们就来看看xls... 在Windows操作系统中,xlstat4.dll是一个重要的动态链接库文件,通常用于支持各种应用程序

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w