递推化简+线段树区间维护,P6477 [NOI Online #2 提高组] 子序列问题

2024-02-04 04:04

本文主要是介绍递推化简+线段树区间维护,P6477 [NOI Online #2 提高组] 子序列问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、题目

1.1题目背景

2s 512M

1.2题目描述

给定一个长度为 n n n 的正整数序列 A 1 A_1 A1, A 2 A_2 A2, ⋯ \cdots , A n A_n An。定义一个函数 f ( l , r ) f(l,r) f(l,r) 表示:序列中下标在 [ l , r ] [l,r] [l,r] 范围内的子区间中,不同的整数个数。换句话说, f ( l , r ) f(l,r) f(l,r) 就是集合 { A l , A l + 1 , ⋯ , A r } \{A_l,A_{l+1},\cdots,A_r\} {Al,Al+1,,Ar} 的大小,这里的集合是不可重集,即集合中的元素互不相等。

现在,请你求出 ∑ l = 1 n ∑ r = l n ( f ( l , r ) ) 2 \sum_{l=1}^n\sum_{r=l}^n (f(l,r))^2 l=1nr=ln(f(l,r))2。由于答案可能很大,请输出答案对 1 0 9 + 7 10^9 +7 109+7 取模的结果。

1.3输入格式

第一行一个正整数 n n n,表示序列的长度。

第二行 n n n 个正整数,相邻两个正整数用空格隔开,表示序列 A 1 A_1 A1, A 2 A_2 A2, ⋯ \cdots , A n A_n An

1.4输出格式

仅一行一个非负整数,表示答案对 1 0 9 + 7 10^9+7 109+7 取模的结果。

1.5样例 #1

样例输入 #1

4
2 1 3 2

样例输出 #1

43

样例 #2

样例输入 #2

3
1 1 1

样例输出 #2

6

1.6提示

对于 10 % 10\% 10% 的数据,满足 1 ≤ n ≤ 10 1 \leq n \leq 10 1n10

对于 30 % 30\% 30% 的数据,满足 1 ≤ n ≤ 100 1 \leq n \leq 100 1n100

对于 50 % 50\% 50% 的数据,满足 1 ≤ n ≤ 1 0 3 1\leq n \leq 10^3 1n103

对于 70 % 70\% 70% 的数据,满足 1 ≤ n ≤ 1 0 5 1 \leq n \leq 10^5 1n105

对于 100 % 100\% 100% 的数据,满足 1 ≤ n ≤ 1 0 6 1\leq n\leq 10^6 1n106,集合中每个数的范围是 [ 1 , 1 0 9 ] [1,10^9] [1,109]

1.7原题链接

https://www.luogu.com.cn/problem/P6477


二、解题报告

1、思路分析

1e6数据量,必须想出O(N)或者O(NlogN)的解法,不然肯定过不了

我们发现a[r]对于f(l , r)的影响为:即a[r]上一次出现位置为last[a[r]],那么f(i , r)都+1,i >= last[a[r]] + 1,其它f值都不变

这样我们似乎可以得出某种递推关系,我们令g® = Σf(l , r)^2

那么g® - g(r - 1) = Σf(l , r) ^ 2 - f(l , r - 1) ^ 2,其中last[a[r]] + 1 <= l <= r

进一步化简:g(r ) - g(r - 1) = Σf(l , r) * 2 + r - last[a[r]]

这样一来,我们就把平方和转化为线性和

我们只需要用线段树存储f(l , r),其中l >= 1,即可,然后每求一次g®都对[last[a[r]] + 1 , r]区间+1

每次求g®只需要知道g(r - 1)和线段树对应区间和,这一步是O(logn),枚举右端点是O(n),整体O(nlogn)

2、复杂度

时间复杂度:O(nlogn) 空间复杂度:O(n)

3、代码详解

#include <iostream>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define lc p << 1
#define rc p << 1 | 1
#define int long long
const int N = 1e6 + 5, MOD = 1e9 + 7;
int a[N], b[N], last[N], d[N];
struct Node
{int l, r, s, add;
} tr[N << 2];void build(int p, int l, int r)
{tr[p] = {l, r, 0, 0};if (l == r)return;int mid = (l + r) >> 1;build(lc, l, mid), build(rc, mid + 1, r);
}void pushup(int p)
{tr[p].s = tr[lc].s + tr[rc].s;
}void pushdown(int p)
{if (tr[p].add){tr[lc].s += (tr[lc].r - tr[lc].l + 1) * tr[p].add, tr[rc].s += (tr[rc].r - tr[rc].l + 1) * tr[p].add;tr[lc].add += tr[p].add, tr[rc].add += tr[p].add;tr[p].add = 0;}
}void update(int p, int l, int r, int k)
{if (l <= tr[p].l && tr[p].r <= r){tr[p].s += (tr[p].r - tr[p].l + 1) * k;tr[p].add += k;return;}int mid = (tr[p].l + tr[p].r) >> 1;pushdown(p);if (l <= mid)update(lc, l, r, k);if (r > mid)update(rc, l, r, k);pushup(p);
}int query(int p, int l, int r)
{if (l <= tr[p].l && r >= tr[p].r)return tr[p].s;int mid = (tr[p].l + tr[p].r) >> 1, ret = 0;pushdown(p);if (l <= mid)ret += query(lc, l, r);if (r > mid)ret += query(rc, l, r);return ret;
}int read()
{int s = 0, w = 1;char ch = getchar();while (ch < '0' || ch > '9')w *= (ch == '-' ? -1 : 1), ch = getchar();while (ch >= '0' && ch <= '9')s = (s << 1) + (s << 3) + (ch ^ 48), ch = getchar();return s * w;
}void write(int x)
{if (x < 0)putchar('-');if (x > 9)write(x / 10);putchar((x % 10) ^ 48);
}signed main()
{// freopen("in.txt", "r", stdin);int n = read();for (int i = 1; i <= n; i++)a[i] = read(), b[i] = a[i];sort(b + 1, b + n + 1);int m = unique(b + 1, b + n + 1) - b - 1;for (int i = 1, k; i <= n; i++){k = lower_bound(b + 1, b + m + 1, a[i]) - b;d[i] = last[k];last[k] = i;}int ans = 0;build(1, 1, n);for (int i = 1, cur = 0; i <= n; i++){cur += i - d[i] + (query(1, d[i] + 1, i) << 1);cur %= MOD;ans = (ans + cur) % MOD;update(1, d[i] + 1, i, 1);}write(ans);return 0;
}

这篇关于递推化简+线段树区间维护,P6477 [NOI Online #2 提高组] 子序列问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676305

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

Java中字符编码问题的解决方法详解

《Java中字符编码问题的解决方法详解》在日常Java开发中,字符编码问题是一个非常常见却又特别容易踩坑的地方,这篇文章就带你一步一步看清楚字符编码的来龙去脉,并结合可运行的代码,看看如何在Java项... 目录前言背景:为什么会出现编码问题常见场景分析控制台输出乱码文件读写乱码数据库存取乱码解决方案统一使