GoogleLeNet(Inception-V1)论文及代码解析

2024-02-04 03:48

本文主要是介绍GoogleLeNet(Inception-V1)论文及代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • GoogleLeNet论文

  • tensorflow代码分析

  • 小结

GoogleLeNet论文

       GoogleLeNet是2014年ImageNet中ILSVRC14竞赛的冠军,和VGG网络是同一届,VGG网络是当年竞赛的亚军。但是实际上两个网络的TOP-5错误率相差并不多,GoogleLeNet的网络结构相对VGG复杂一些,是一个22层的网络,并且提出了一种Inception的结构,是一个很大的进步。

       论文地址 论文的标题是“Going deeper with convolutions”,跟VGG一样也是遵循需要将网络设计的更深的思想。网络名字取名为GoogleLeNet是为了向CNN网络的开山鼻祖LeNet致敬。

1.前言

      论文中作者花了大量的篇幅来描述当前分类和检测网络取得的成绩,以及遇到的问题,然后引出作者对现状改进的思路。

      众所周知,改进深度神经网络最直接的方式是增加网络的大小,包括增加深度和宽度。增加深度就是增加神经网络的层数,增加宽度就是增加每一层的units个数。但是增加了深度和宽度会带来两个问题:1.因为参数变多而使得网络更加容易overfitting,反而降低了精度。2.会大大增加计算量,而且可能训练出来部分参数最终为0,这样在计算资源有限的情况下浪费了计算资源。所以我们最终的目标是:减少参数,减少计算量,增加深度,增加宽度。

       解决方法就是将全连接替换为稀疏连接结构,但是现有的计算方式对非均匀的稀疏计算效率非常低,所以作者提出了自己的改进方式。

2.Inception模型

inception-v1-block

       上图是作者提出的两种Inception的模型,b模型是a模型的改进版本。

       先说a模型,论文中说是以一种稠密组件去逼近和替代一个最优的局部稀疏结构。我的理解是这种连接模型既会有四种连接方式带来的信息汇总,而且相对直接3x3的Conv进行连接的方式参数反而有所减少。为何参数会有减少呢?举个下图的例子(只是举个例子,并不是真实使用情况):

        接着作者又发现,虽然参数量是有减少,但是减少的并不是太多,而且如果输入的数据channel值比较大,参数量仍然会比较大,所以作者提出了b模型。b模型相对a模型而言,在使用3x3或者5x5的Conv连接之前用了1x1的Conv进行降维,这样会使参数量再一次减少,并且在1x1Conv后也使用非线性激活就增加了网络的非线性。参数量变化如下图(只是举个例子,并不是真实使用情况):

        总之,Inception模型的好处是既能增加网络的深度和宽度,又不会增加计算量,而且稀疏连接的方式还能有助于减少过拟合。

3.网络结构

论文中的网络结构如下图:

structure

  • Input为224x224x3的RGB图片,同样减去每个颜色通道的均值(同vgg网络一样)
  • #3x3 reduce表示在3x3Conv之前1x1Conv连接的channel数量,同样#5x5 reduce表示在5x5Conv之前1x1Conv链接的channel数量.
  • pool proj表示inception中max pooling后的1x1Conv连接的channel数量
  • 只计算有参数的层数是22层,所有的卷基层都用Relu激活,包括inception内部的卷积
  • 作者发现去掉最后的FC,改为avg pool,精确度有提升,但是还要保留后面的dropout

另外作者担心这么深的网络越往后信息的传播能力会受损,但是作者发现中间层的网络还带有比较多的信息,因此在inception(4a)和inception(4d)后面增加了一个比较小的网络,做了softmax输出,和最后的softmax输出相加,但是权重设置为0.3.也就是最后的output是softmax2+0.3*softmax1+0.3*softmax0

                                                            inception(4a)处的softmax

                                                     inception(4d)处的softmax

这篇关于GoogleLeNet(Inception-V1)论文及代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676271

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java 线程池+分布式实现代码

《Java线程池+分布式实现代码》在Java开发中,池通过预先创建并管理一定数量的资源,避免频繁创建和销毁资源带来的性能开销,从而提高系统效率,:本文主要介绍Java线程池+分布式实现代码,需要... 目录1. 线程池1.1 自定义线程池实现1.1.1 线程池核心1.1.2 代码示例1.2 总结流程2. J

JS纯前端实现浏览器语音播报、朗读功能的完整代码

《JS纯前端实现浏览器语音播报、朗读功能的完整代码》在现代互联网的发展中,语音技术正逐渐成为改变用户体验的重要一环,下面:本文主要介绍JS纯前端实现浏览器语音播报、朗读功能的相关资料,文中通过代码... 目录一、朗读单条文本:① 语音自选参数,按钮控制语音:② 效果图:二、朗读多条文本:① 语音有默认值:②