GoogleLeNet(Inception-V1)论文及代码解析

2024-02-04 03:48

本文主要是介绍GoogleLeNet(Inception-V1)论文及代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • GoogleLeNet论文

  • tensorflow代码分析

  • 小结

GoogleLeNet论文

       GoogleLeNet是2014年ImageNet中ILSVRC14竞赛的冠军,和VGG网络是同一届,VGG网络是当年竞赛的亚军。但是实际上两个网络的TOP-5错误率相差并不多,GoogleLeNet的网络结构相对VGG复杂一些,是一个22层的网络,并且提出了一种Inception的结构,是一个很大的进步。

       论文地址 论文的标题是“Going deeper with convolutions”,跟VGG一样也是遵循需要将网络设计的更深的思想。网络名字取名为GoogleLeNet是为了向CNN网络的开山鼻祖LeNet致敬。

1.前言

      论文中作者花了大量的篇幅来描述当前分类和检测网络取得的成绩,以及遇到的问题,然后引出作者对现状改进的思路。

      众所周知,改进深度神经网络最直接的方式是增加网络的大小,包括增加深度和宽度。增加深度就是增加神经网络的层数,增加宽度就是增加每一层的units个数。但是增加了深度和宽度会带来两个问题:1.因为参数变多而使得网络更加容易overfitting,反而降低了精度。2.会大大增加计算量,而且可能训练出来部分参数最终为0,这样在计算资源有限的情况下浪费了计算资源。所以我们最终的目标是:减少参数,减少计算量,增加深度,增加宽度。

       解决方法就是将全连接替换为稀疏连接结构,但是现有的计算方式对非均匀的稀疏计算效率非常低,所以作者提出了自己的改进方式。

2.Inception模型

inception-v1-block

       上图是作者提出的两种Inception的模型,b模型是a模型的改进版本。

       先说a模型,论文中说是以一种稠密组件去逼近和替代一个最优的局部稀疏结构。我的理解是这种连接模型既会有四种连接方式带来的信息汇总,而且相对直接3x3的Conv进行连接的方式参数反而有所减少。为何参数会有减少呢?举个下图的例子(只是举个例子,并不是真实使用情况):

        接着作者又发现,虽然参数量是有减少,但是减少的并不是太多,而且如果输入的数据channel值比较大,参数量仍然会比较大,所以作者提出了b模型。b模型相对a模型而言,在使用3x3或者5x5的Conv连接之前用了1x1的Conv进行降维,这样会使参数量再一次减少,并且在1x1Conv后也使用非线性激活就增加了网络的非线性。参数量变化如下图(只是举个例子,并不是真实使用情况):

        总之,Inception模型的好处是既能增加网络的深度和宽度,又不会增加计算量,而且稀疏连接的方式还能有助于减少过拟合。

3.网络结构

论文中的网络结构如下图:

structure

  • Input为224x224x3的RGB图片,同样减去每个颜色通道的均值(同vgg网络一样)
  • #3x3 reduce表示在3x3Conv之前1x1Conv连接的channel数量,同样#5x5 reduce表示在5x5Conv之前1x1Conv链接的channel数量.
  • pool proj表示inception中max pooling后的1x1Conv连接的channel数量
  • 只计算有参数的层数是22层,所有的卷基层都用Relu激活,包括inception内部的卷积
  • 作者发现去掉最后的FC,改为avg pool,精确度有提升,但是还要保留后面的dropout

另外作者担心这么深的网络越往后信息的传播能力会受损,但是作者发现中间层的网络还带有比较多的信息,因此在inception(4a)和inception(4d)后面增加了一个比较小的网络,做了softmax输出,和最后的softmax输出相加,但是权重设置为0.3.也就是最后的output是softmax2+0.3*softmax1+0.3*softmax0

                                                            inception(4a)处的softmax

                                                     inception(4d)处的softmax

这篇关于GoogleLeNet(Inception-V1)论文及代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676271

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Java Scanner类解析与实战教程

《JavaScanner类解析与实战教程》JavaScanner类(java.util包)是文本输入解析工具,支持基本类型和字符串读取,基于Readable接口与正则分隔符实现,适用于控制台、文件输... 目录一、核心设计与工作原理1.底层依赖2.解析机制A.核心逻辑基于分隔符(delimiter)和模式匹