国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助

本文主要是介绍国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://cs.cug.edu.cn/teacherweb/lichanghe/pages/EAlib.html大笑


如果上面的服务器下载EAlib源代码有问题,可以参考这个网盘的

Welcome to Changhe Li's EAlib Page


About Me News Research Teaching Publications EAlib Downloads Funding Links

LIBRARY OF EVOLUTIONARY ALGORITHMS

  • Description
  • Library structure
  • Instruction to add new algorithms and problems
  • Algorithms collected so far(October 2011)
  • Problems collected so far(October 2011)
  • Coming algorithms
  • Download
  • Contributors

This is an open sources project with the aim of providing the source codes of state-of-the-art algorithms, problems, and algorithms' performance metrics for researchers in the area of evolutionary computation. Based on this framework, you can easily implement your ideas and add the codes into this library. More important, you will be also able to compare with other state-of-the-art algorithms without implementing them under a fair environment. In addition, this library will be updated as time goes on when new algorithms and problems come to this research area. Anyone, who want to contribute to this project, is welcome, and please contact me without hesitation.

This project is totally for research purpose. As a researcher in the area of evolutionary computation, I know how bad it is if there is no source codes available for the algorithm you want to compare with your own method. It may spend weeks to find out why the results you got are not as good as the results provided in the original paper. The worst case is that you just can not figure out the reason even though you spend weeks. There are many reasons: not enough details available of the algorithm, different implementations, using different languages, the stochastic characteristic of EAs ..., etc. Therefore, here comes the motivation to build up a standard platform for you to carry out experiments. I believe that this project would clear the way for your research and save you a lot of time. Well, in a word, I would like to encourage you to take part in this project and let's together make the research life easy, comfortable, and efficient for you and someone else.


This library was implemented in C++ language, it has three basic components: algorithms, problems, and algorithms' performance evaluation. The class structure is as follows:

Algorithms:

This module provides basic templates for variant EAs. The module includes three basic classes: the Chromosome,Individual, and Population classes. Functions and descriptions of them are as follows.

The Chromosome class: The most fundamental class, represents a solution of a problem and is able to take composite encoding scheme,e.g., A b 1.23 ! & true 59. It was designed based on problems' representation.

The Individual class: A simple template individual class, provides some basic operations for a single individual with variant individuals of different algorithms.

The Population class: A template population class, provides some basic operations for a population


Problems:

This module collects some benchmark problems used for the performance evaluation for EAs in different research topics. Currently, it has two types of problems, function optimization problems (FOPs) and dynamic optimization problems(DOPs).

Problem .................................................... the base class for all problems
|
+BenchmarkFunction ........................................ the base class for all function optimization problems
| |
| +FSphere ................................................ the Sphere function f(x)=x*x
+DynamicProblem ........................................... the base class for dynamic optimization problems(DOPs)
|
+DynamicContinuous ...................................... the base class for DOPs in continuous space
|
+RealDB G.............................................. the base class for GDBG benchmark
| |
| +CompositionDBG ..................................... the Composition problems in GDBG 
| |
| +RotationDBG ......................................... the Rotation problems in GDBG
|
+MovingPeak ............................................ the Moving Peaks problem
|
+DF1 ................................................... the DF1 problem

Performance metrics:

PerformSingleObj ...............................................the performance measurement for single objective optimization problem

Other major files:

Global.h ........................................................ class for global variables 
StructDec.h ..................................................... struct declaration file
newran.h ........................................................ random number generator: From library http://www.robertnz.net/nr02doc.htm


Instruction for new algorithms and new problems

To add a new algorithm:

Take a simple PSO algorithm as an example, you need to develop two classes, which are: PSOIndividual: public Individual and PSOPopulation: public Population<PSOIndividual> , then follow the steps described in the beginning of the main function in main.cpp file to run the new algorithm.

To add a new problem:

If a new problem is to be added into this lib, you need to implement it under a proper position in the Problem class. In addition, encoding and decoding work must be done in the Chromosome.cpp file if a new solution representation is needed to describe the problem.

Each algorithm and problem has a unique ID, please assign an ID to an algorithm or a problem when they are added.

Development:

You can develop your algorithms in both Visual studio 2010 in Windows and CODE::BLOCK in Ubuntu, corresponding project files are EAlib.sln and EAlib.cbp, respectively. A makefile is also available to compile the program. If you have any question about this library, please contact Changhe Li with changhe.lw@gmail.com.


Algorithms collected so far:

This lib has included some algorithms from different research areas, which are listed below:

  • Function optimization:
    • Particle swarm optimization
      1. SPSO07: C. Maurice, Standard PSO 2007, http://www.particleswarm.info/Programs.html, 2007.
      2. SLPSO: Changhe Li, Shengxiang Yang and Trung Thanh Nguyen, A Self-Learning Particle Swarm Optimizer for Global Optimization Problems. accepted by IEEE TSMCB.
    • Differential evolution
      1. Storn, R. and Price, K. (1997), Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Journal of Global Optimization, 11, pp. 341--359.
      2. Thomsen R (2004) Multimodal optimization using crowding-based differential evolution. In: Proceedings of the 2004 IEEE congress on evolutionary computation, pp 1382--1389. IEEE Press, Portland, OR, USA
    • Genetic algorithms
    • Hybrid algorithms
  • Dynamic optimization
    • Particle swarm optimization
      1. CPSO: S. Yang and C. Li, A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments, IEEE Trans. Evol. Comput., vol. 14, no. 6, pp. 959-974, 2010.
      2. CPSOR: C.Li and S.Yang A General Framework of Multi-Population Methods with Clustering in Undetectable Dynamic Environments , accepted by IEEE TEC
    • Differential evolution
    • Genetic algorithms
    • Hybrid algorithms
      1. Lung R, Dumitrescu D (2010) Evolutionary swarm cooperative optimization in dynamic environments. Nat Comput Int J 9(1): 83--94.
  • Multi-Objective optimization

Problems collected so far:

  • Function optimization problems(FOPs) :Sphere, Sphere_Noisy, S_Sphere, R_Sphere, RS_Sphere, S_Sphere_CEC05, Rastrigin, Rastrigin_Noisy, S_Rastrigin, R_Rastrigin, RS_Rastrigin, S_Rastrigin_CEC05, RS_Rastrigin_CEC05, Weierstrass, RS_Weierstrass, R_Weierstrass, RS_Weierstrass_CEC05, Griewank, R_Griewank, RS_Griewank, Ackley, Ackley_Noisy, S_Ackley, R_Ackley, RS_Ackley, RS_Ackley_Bound_CEC05, Step, Quartic_Noisy, Scaffer_F6, Rosenbrock, S_Rosenbrock, S_Rosenbrock_CEC05, Schwefel_2_22, Schwefel_2_22_Noisy, S_Schwefel_2_22, R_Schwefel_2_22, RS_Schwefel_2_22, Schwefel, Schwefel_Noisy, S_Schwefel, R_Schwefel, RS_Schwefel, Schwefel_1_2, Schwefel_1_2_Noisy, S_Schwefel_1_2, S_Schwefel_1_2_Noisy, R_Schwefel_1_2, RS_Schwefel_1_2, S_Schwefel_1_2_CEC05, S_Schwefel_1_2_Noisy_CEC05, Schwefel_2_21, Penalized_1, Penalized_2, Noncont_Rastrigin, RS_Elliptic_CEC05, Elliptic, Com, R_Com, Com_CEC05, H_Com_CEC05, H_Com_Noisy_CEC05, RH_Com_CEC05, RH_Com_NarrowBasin_CEC05, RH_Com_Bound_CEC05, M_global1, M_global2, M_global3, M_global4, M_global5, S_Sphere_CEC08, Schwefel_2_21_CEC08, S_Rosenbrock_CEC08, S_Rastrigin_CEC08, S_Griewank_CEC08, S_Ackley_CEC08, RW_Gear_Train, RW_ParEst_FMSoundWaves.
  • Dynamic optimization problems(DOPs): CompositionDBG_DOP, RotationDBG_DOP, MovingPeak_DOP, DF1_DOP, Binary_DOP.

Please find the description of the above problems in the corresponding files in the library. 

Coming algorithms:

  1. CPSO-Hk: F. van den Bergh and A. P. Engelbrech, "A cooperative approach to particle swarm optimization," IEEE Trans. Evol. Comput., vol. 8, pp. 225-239, 2004.
  2. FIPS: R. Mendes, J. Kennedy, and J. Neves, "The fully informed particle swarm: Simpler, Maybe better," IEEE Trans. Evol. Comput., vol. 8, pp. 204-210, 2004.
  3. CLSPO: J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baska, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281-295, 2006.
  4. APSO:Z. Zhan, J. Zhang, Y. Li, and H. S. Chung, "Adaptive particle swarm optimization," IEEE Trans. Syst., Man, Cybern. B: Cybern., vol. 39, pp. 1362-1381, 2009.
  5. FPSO: M. A. M. de Oca, T. Stutzle, M. Birattari, and M. Dorigo, "Frankenstein's pso: A composite particle swarm optimization algorithm," IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 1120-1132, 2009.
  6. JADE: J. Zhang and A. C. Sanderson, "JADE: adaptive differential evolution with optional external archive," IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 945-958, 2009.
  7. HRCGA:C. Garcia-Martinez, M. Lozano, F. Herrera, D. Molina, and A. M.Sanchez, "Global and local real-coded genetic algorithms based on parent-centric crossover operators," Europ. J. Oper. Res., vol. 185, pp.1088-1113, 2008.
  8. rSPSO: Bird, S.; Xiaodong Li; , "Using regression to improve local convergence," Evolutionary Computation, 2007. CEC 2007. IEEE Congress on , vol., no., pp.592-599, 25-28 Sept. 2007
  9. SPSO: Parrott, D.; Xiaodong Li; , "Locating and tracking multiple dynamic optima by a particle swarm model using speciation," Evolutionary Computation, IEEE Transactions on , vol.10, no.4, pp.440-458, Aug. 2006.
  10. mQSO,mCPSO: Blackwell, T.; Branke, J.; , "Multiswarms, exclusion, and anti-convergence in dynamic environments," Evolutionary Computation, IEEE Transactions on , vol.10, no.4, pp.459-472, Aug. 2006


To download the EAlib, please click here(updated 20 July 2012).


Contributors:

Ming Yang



last updated: 09/02/2013 00:12:41

这篇关于国内也有不错的开源项目,只是感觉后劲不足,亟须自然科学基金赞助的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/676052

相关文章

vite搭建vue3项目的搭建步骤

《vite搭建vue3项目的搭建步骤》本文主要介绍了vite搭建vue3项目的搭建步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录1.确保Nodejs环境2.使用vite-cli工具3.进入项目安装依赖1.确保Nodejs环境

idea+spring boot创建项目的搭建全过程

《idea+springboot创建项目的搭建全过程》SpringBoot是Spring社区发布的一个开源项目,旨在帮助开发者快速并且更简单的构建项目,:本文主要介绍idea+springb... 目录一.idea四种搭建方式1.Javaidea命名规范2JavaWebTomcat的安装一.明确tomcat

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日

在.NET项目中嵌入Python代码的实践指南

《在.NET项目中嵌入Python代码的实践指南》在现代开发中,.NET与Python的协作需求日益增长,从机器学习模型集成到科学计算,从脚本自动化到数据分析,然而,传统的解决方案(如HTTPAPI或... 目录一、CSnakes vs python.NET:为何选择 CSnakes?二、环境准备:从 Py

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca