从分形图片用Box counting方法计算分形维数的一个例子

2024-02-04 01:18

本文主要是介绍从分形图片用Box counting方法计算分形维数的一个例子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击打开链接

l dimension of natural objects from digital images

up vote 42 down vote favorite
18

This is a useful topic. A college physics lab, medical diagnostics, urban growth, etc. - there is a lot of applications. On this site by Paul Bourke about Google Earth fractals we can get a high resolution images (in this post they are low res - import from source for experiments). For example, around Lake Nasser in Egypt:

img = Import["http://paulbourke.net/fractals/googleearth/egypt2.jpg"]

Lake Nasser boundary

The simplest method I know is Box Counting Method which has a lot of shortcomings. We start from extracting the boundary - which is the fractal object:

{Binarize[img], iEdge = EdgeDetect[Binarize[img]]}

outline of Lake Nasser

Now we could partition image into boxes and see how many boxes have at least 1 white pixel. This is a very rudimentary implementation:

MinS = Floor[Min[ImageDimensions[iEdge]]/2];
data = ParallelTable[{1/size, Total[Sign /@ (Total[#, 2] & /@ (ImageData /@ Flatten[ImagePartition[iEdge, size]]))]}, {size, 10, MinS/2, 10}];

From this the slope is 1.69415 which is a fractal dimension that makes sense

line = Fit[Log[data], {1, x}, x]

13.0276 + 1.69415 x

Plot[line, {x, -6, -2}, Epilog -> Point[Log[FDL]], PlotStyle -> Red, Frame -> True, Axes -> False]

plot of fractal dimension line

Benchmark: if I run this on high res of Koch snowflake i get something like ~ 1.3 with more exact number being 4/log 3 ≈ 1.26186.

Question: can we improve or go beyond the above box counting method?

All approaches are acceptable if they find fractal dimension from any image of natural fractal.

share edit flag
 
2
 
You have a lot of programs in mathematica to measure fractal dimensions and multi fractal spectrum of an image in the book: Fractal Geography, Andre Dauphine, Wiley, 2012 See the book on the Wolfram Mathematica | Books or Amazon ![enter image description here](wolfram.com/books/profile.cgi?id=8108)–   Dauphine  Oct 16 '12 at 9:32 

You can still use box count, but doing it smarter :)

Counting boxes with at least 1 white pixel from ImagePartition can be done more efficiently usingIntegral Image, a technique used by Viola-Jones (2004) in their now popular face recognition framework. For a mathematical motivation (and proof), Viola and Jones point to this source.

Actually, someone already asked about a Mathematica implementation here.

What Integral Image allows you to do is to compute efficiently the total mass of any rectangle in an image. So, you can define the following:

IntegralImage[d_] := Map[Accumulate, d, {0, 1}];
data = ImageData[ColorConvert[iEdge, "Grayscale"]]; (* iEdge: your snowflake image *)
ii = IntegralImage[data];

Then, the mass (white content) of a region, is

(* PixelCount: total mass in region delimited by two corner points, given ii, the IntegralImage *)
PixelCount[ii_, {p0x_, p0y_}, {p1x_, p1y_}] := ii[[p1x, p1y]] + ii[[p0x, p0y]] - ii[[p1x, p0y]] - ii[[p0x, p1y]];

So, instead of partitioning the image using ImagePartition, you can get a list of all the boxes of a given size by

PartitionBoxes[{rows_, cols_}, size_] := Transpose /@ Tuples[{Partition[Range[1, rows, size], 2, 1], Partition[Range[1, cols, size], 2, 1]}];

If you apply PixelCount to above, as in your algorithm, you should have the same data but calculated faster.

PixelCountsAtSize[{rows_, cols_}, ii_, size_] :=((PixelCount [ii, #1, #2] &) @@ # &) /@ PartitionBoxes[{rows, cols}, size];

Following your approach here, we should then do

fractalDimensionData = Table[{1/size, Total[Sign /@ PixelCountsAtSize[Dimensions[ii], ii, size]]}, {size, 3, Floor[Min[Dimensions[ii]]/10]}];
line = Fit[Log[fractalDimensionData], {1, x}, x]Out:= 10.4414 + 1.27104 x

which is very close to the actual fractal dimension of the snowflake (which I used as input).

Two things to note. Because this is faster, I dared to generate the table at box size 3. Also, unlike ImagePartition, my partition boxes are all of the same size and therefore, it excludes uneven boxes at the edges. So, instead of doing minSize/2 as you did, I put minSize/10 - excluding bigger and misleading values for big boxes.

Hope this helps.

Update

Just ran the algorithm starting with 2 and got this 10.4371 + 1.27008 x. And starting with 1 is 10.4332 + 1.26919 x, much better. Of course, it takes longer but still under or around 1 min for your snowflake image.

Update 2

And finally, for your image from Google Earth (eqypt2.jpg) the output is (starting at 1-pixel boxes)

12.1578 + 1.47597 x

It ran in 43.5 secs in my laptop. Using ParallelTable is faster: around 28 secs.

share edit flag
 
 
There isn't a "snowflake" image. All three images come from the same object (and I guess the fractal dimension should be the same for all of them) –   belisarius  Dec 23 '13 at 21:03
upvote
  flag
@belisarius, the PO published a Koch snowflake image as Benchmark (see last part of post) and that's the one I used. I called it 'snowflake' for short. On the other hand, this is still a numerical procedure, so the numbers will be different depending on approximation. The Update2 refers to the eqypt2.jpg image, also made available by the PO, as he asked for an improvement suitable for real-life images. –   caya  Dec 23 '13 at 22:40
 
sorry, I missed that link. Thanks –   belisarius  Dec 24 '13 at 0:05
 
+1 This is very neat @caya, thank you! I will wait "a bit" hoping that someone can implement things likewavelet multi-fractals or similar. –   Vitaliy Kaurov  Feb 14 at 20:02 
 
@VitaliyKaurov, glad you liked it. Note that Viola & Jones rightly pointed out a link between integral imageand Haar wavelet basis in their paper; although this wasn't explored further. It is unclear to me the link between the paper you mentioned and fractal dimension, but certainly worth reading as I am interested in these kind of problems. Cheers. –   caya  Feb 16 at 12:40

这篇关于从分形图片用Box counting方法计算分形维数的一个例子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675982

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自