从分形图片用Box counting方法计算分形维数的一个例子

2024-02-04 01:18

本文主要是介绍从分形图片用Box counting方法计算分形维数的一个例子,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击打开链接

l dimension of natural objects from digital images

up vote 42 down vote favorite
18

This is a useful topic. A college physics lab, medical diagnostics, urban growth, etc. - there is a lot of applications. On this site by Paul Bourke about Google Earth fractals we can get a high resolution images (in this post they are low res - import from source for experiments). For example, around Lake Nasser in Egypt:

img = Import["http://paulbourke.net/fractals/googleearth/egypt2.jpg"]

Lake Nasser boundary

The simplest method I know is Box Counting Method which has a lot of shortcomings. We start from extracting the boundary - which is the fractal object:

{Binarize[img], iEdge = EdgeDetect[Binarize[img]]}

outline of Lake Nasser

Now we could partition image into boxes and see how many boxes have at least 1 white pixel. This is a very rudimentary implementation:

MinS = Floor[Min[ImageDimensions[iEdge]]/2];
data = ParallelTable[{1/size, Total[Sign /@ (Total[#, 2] & /@ (ImageData /@ Flatten[ImagePartition[iEdge, size]]))]}, {size, 10, MinS/2, 10}];

From this the slope is 1.69415 which is a fractal dimension that makes sense

line = Fit[Log[data], {1, x}, x]

13.0276 + 1.69415 x

Plot[line, {x, -6, -2}, Epilog -> Point[Log[FDL]], PlotStyle -> Red, Frame -> True, Axes -> False]

plot of fractal dimension line

Benchmark: if I run this on high res of Koch snowflake i get something like ~ 1.3 with more exact number being 4/log 3 ≈ 1.26186.

Question: can we improve or go beyond the above box counting method?

All approaches are acceptable if they find fractal dimension from any image of natural fractal.

share edit flag
 
2
 
You have a lot of programs in mathematica to measure fractal dimensions and multi fractal spectrum of an image in the book: Fractal Geography, Andre Dauphine, Wiley, 2012 See the book on the Wolfram Mathematica | Books or Amazon ![enter image description here](wolfram.com/books/profile.cgi?id=8108)–   Dauphine  Oct 16 '12 at 9:32 

You can still use box count, but doing it smarter :)

Counting boxes with at least 1 white pixel from ImagePartition can be done more efficiently usingIntegral Image, a technique used by Viola-Jones (2004) in their now popular face recognition framework. For a mathematical motivation (and proof), Viola and Jones point to this source.

Actually, someone already asked about a Mathematica implementation here.

What Integral Image allows you to do is to compute efficiently the total mass of any rectangle in an image. So, you can define the following:

IntegralImage[d_] := Map[Accumulate, d, {0, 1}];
data = ImageData[ColorConvert[iEdge, "Grayscale"]]; (* iEdge: your snowflake image *)
ii = IntegralImage[data];

Then, the mass (white content) of a region, is

(* PixelCount: total mass in region delimited by two corner points, given ii, the IntegralImage *)
PixelCount[ii_, {p0x_, p0y_}, {p1x_, p1y_}] := ii[[p1x, p1y]] + ii[[p0x, p0y]] - ii[[p1x, p0y]] - ii[[p0x, p1y]];

So, instead of partitioning the image using ImagePartition, you can get a list of all the boxes of a given size by

PartitionBoxes[{rows_, cols_}, size_] := Transpose /@ Tuples[{Partition[Range[1, rows, size], 2, 1], Partition[Range[1, cols, size], 2, 1]}];

If you apply PixelCount to above, as in your algorithm, you should have the same data but calculated faster.

PixelCountsAtSize[{rows_, cols_}, ii_, size_] :=((PixelCount [ii, #1, #2] &) @@ # &) /@ PartitionBoxes[{rows, cols}, size];

Following your approach here, we should then do

fractalDimensionData = Table[{1/size, Total[Sign /@ PixelCountsAtSize[Dimensions[ii], ii, size]]}, {size, 3, Floor[Min[Dimensions[ii]]/10]}];
line = Fit[Log[fractalDimensionData], {1, x}, x]Out:= 10.4414 + 1.27104 x

which is very close to the actual fractal dimension of the snowflake (which I used as input).

Two things to note. Because this is faster, I dared to generate the table at box size 3. Also, unlike ImagePartition, my partition boxes are all of the same size and therefore, it excludes uneven boxes at the edges. So, instead of doing minSize/2 as you did, I put minSize/10 - excluding bigger and misleading values for big boxes.

Hope this helps.

Update

Just ran the algorithm starting with 2 and got this 10.4371 + 1.27008 x. And starting with 1 is 10.4332 + 1.26919 x, much better. Of course, it takes longer but still under or around 1 min for your snowflake image.

Update 2

And finally, for your image from Google Earth (eqypt2.jpg) the output is (starting at 1-pixel boxes)

12.1578 + 1.47597 x

It ran in 43.5 secs in my laptop. Using ParallelTable is faster: around 28 secs.

share edit flag
 
 
There isn't a "snowflake" image. All three images come from the same object (and I guess the fractal dimension should be the same for all of them) –   belisarius  Dec 23 '13 at 21:03
upvote
  flag
@belisarius, the PO published a Koch snowflake image as Benchmark (see last part of post) and that's the one I used. I called it 'snowflake' for short. On the other hand, this is still a numerical procedure, so the numbers will be different depending on approximation. The Update2 refers to the eqypt2.jpg image, also made available by the PO, as he asked for an improvement suitable for real-life images. –   caya  Dec 23 '13 at 22:40
 
sorry, I missed that link. Thanks –   belisarius  Dec 24 '13 at 0:05
 
+1 This is very neat @caya, thank you! I will wait "a bit" hoping that someone can implement things likewavelet multi-fractals or similar. –   Vitaliy Kaurov  Feb 14 at 20:02 
 
@VitaliyKaurov, glad you liked it. Note that Viola & Jones rightly pointed out a link between integral imageand Haar wavelet basis in their paper; although this wasn't explored further. It is unclear to me the link between the paper you mentioned and fractal dimension, but certainly worth reading as I am interested in these kind of problems. Cheers. –   caya  Feb 16 at 12:40

这篇关于从分形图片用Box counting方法计算分形维数的一个例子的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/675982

相关文章

Linux系统中查询JDK安装目录的几种常用方法

《Linux系统中查询JDK安装目录的几种常用方法》:本文主要介绍Linux系统中查询JDK安装目录的几种常用方法,方法分别是通过update-alternatives、Java命令、环境变量及目... 目录方法 1:通过update-alternatives查询(推荐)方法 2:检查所有已安装的 JDK方

SQL Server安装时候没有中文选项的解决方法

《SQLServer安装时候没有中文选项的解决方法》用户安装SQLServer时界面全英文,无中文选项,通过修改安装设置中的国家或地区为中文中国,重启安装程序后界面恢复中文,解决了问题,对SQLSe... 你是不是在安装SQL Server时候发现安装界面和别人不同,并且无论如何都没有中文选项?这个问题也

Java Thread中join方法使用举例详解

《JavaThread中join方法使用举例详解》JavaThread中join()方法主要是让调用改方法的thread完成run方法里面的东西后,在执行join()方法后面的代码,这篇文章主要介绍... 目录前言1.join()方法的定义和作用2.join()方法的三个重载版本3.join()方法的工作原

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

Spring Boot从main方法到内嵌Tomcat的全过程(自动化流程)

《SpringBoot从main方法到内嵌Tomcat的全过程(自动化流程)》SpringBoot启动始于main方法,创建SpringApplication实例,初始化上下文,准备环境,刷新容器并... 目录1. 入口:main方法2. SpringApplication初始化2.1 构造阶段3. 运行阶

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

Java中Arrays类和Collections类常用方法示例详解

《Java中Arrays类和Collections类常用方法示例详解》本文总结了Java中Arrays和Collections类的常用方法,涵盖数组填充、排序、搜索、复制、列表转换等操作,帮助开发者高... 目录Arrays.fill()相关用法Arrays.toString()Arrays.sort()A

Nginx安全防护的多种方法

《Nginx安全防护的多种方法》在生产环境中,需要隐藏Nginx的版本号,以避免泄漏Nginx的版本,使攻击者不能针对特定版本进行攻击,下面就来介绍一下Nginx安全防护的方法,感兴趣的可以了解一下... 目录核心安全配置1.编译安装 Nginx2.隐藏版本号3.限制危险请求方法4.请求限制(CC攻击防御)