XGB-1:XGBoost安装及快速上手

2024-02-03 18:20
文章标签 安装 快速 xgboost xgb

本文主要是介绍XGB-1:XGBoost安装及快速上手,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

XGBoost是“Extreme Gradient Boosting”的缩写,是一种高效的机器学习算法,用于分类、回归和排序问题。它由陈天奇(Tianqi Chen)在2014年首次提出,并迅速在数据科学竞赛和工业界获得广泛应用。XGBoost基于梯度提升框架,但通过引入一系列优化来提升性能和效率。

XGBoost的主要特点:

  1. 性能高效:XGBoost通过并行处理和核外计算来优化计算速度,同时保持高预测精度。
  2. 灵活性:支持自定义目标函数和评估准则,适用于多种类型的问题。
  3. 鲁棒性:包括处理缺失值的功能,能够处理不完整的数据。
  4. 正则化:通过L1和L2正则化避免过拟合,提高模型的泛化能力。
  5. 剪枝:在树构建过程中进行预剪枝和后剪枝,减少过拟合的风险。
  6. 稀疏意识:在处理稀疏数据时更加高效,减少计算量。

应用场景:

  • 分类问题:如邮件分类(垃圾邮件/非垃圾邮件)、图像识别等。
  • 回归问题:如房价预测、股票价格预测等。
  • 排序问题:如搜索引擎结果排序、推荐系统等。

如何使用XGBoost:

  1. 安装:通过Python的pip安装xgboost库。
  2. 数据准备:准备训练数据和标签。
  3. 模型训练:使用xgboost库中的XGBClassifierXGBRegressor进行模型训练。
  4. 模型评估:使用交叉验证等方法评估模型性能。
  5. 参数调优:通过调整学习率、树的数量和深度等参数来优化模型。

XGBoost因其强大的功能和优异的性能,在众多机器学习算法中脱颖而出,成为解决复杂数据问题的有力工具。

安装指南

XGBoost提供了一些语言绑定的二进制软件包,这些二进制软件包支持在具有NVIDIA GPU的机器上使用GPU算法(设备为cuda:0)。请注意,仅在Linux平台上支持使用多个GPU进行训练。

Python

已经上传了预先构建的二进制软件包到PyPI(Python Package Index)以供每个发布版本使用。支持的平台包括Linux(x86_64、aarch64)、Windows(x86_64)和MacOS(x86_64、Apple Silicon)。

# 需要 Pip 21.3+
pip install xgboost

如果遇到权限错误,可能需要使用 --user 标志运行该命令,或者在虚拟环境中运行。

注意

Windows用户需要安装Visual C++ Redistributable

XGBoost需要Visual C++ Redistributable中的DLL文件才能正常运行,请确保安装它。例外情况:如果您已安装了Visual Studio,则已经可以访问必要的库,因此无需安装Visual C++ Redistributable。

每个平台的二进制软件包的功能:

xRKIC.png

Conda

可以使用Conda包管理器安装XGBoost:

conda install -c conda-forge py-xgboost

Conda应该能够检测到机器上是否存在GPU,并安装XGBoost的正确变体。如果遇到问题,请尝试明确指定变体:

# 仅CPU
conda install -c conda-forge py-xgboost-cpu
# 使用NVIDIA GPU
conda install -c conda-forge py-xgboost-gpu

请访问Miniconda网站获取Conda。

注意

在Windows上不提供py-xgboost-gpu

py-xgboost-gpu目前在Windows上不可用。如果使用Windows,请使用pip安装具有GPU支持的XGBoost

R

从CRAN:

install.packages("xgboost")

注意

在Mac OSX上使用所有CPU核心(线程)

如果使用的是Mac OSX,应该首先安装OpenMP库(libomp),方法是运行

brew install libomp

然后运行 install.packages("xgboost")。没有安装OpenMP,XGBoost将仅使用单个CPU核心,导致训练速度不理想。

还提供了带有GPU支持的实验性预构建二进制文件。使用此二进制文件,将能够在不从源代码构建XGBoost的情况下使用GPU算法。从Releases页面下载二进制软件包。文件名将采用xgboost_r_gpu_[os]_[version].tar.gz 的形式,其中[os]可以是linuxwin64,然后通过运行以下命令安装XGBoost:

# 安装依赖项
R -q -e "install.packages(c('data.table', 'jsonlite'))"
# 安装XGBoost
R CMD INSTALL ./xgboost_r_gpu_linux.tar.gz
JVM
  • XGBoost4j/XGBoost4j-Spark

Maven

<properties>...<!-- 在包名中指定 Scala 版本 --><scala.binary.version>2.12</scala.binary.version>
</properties><dependencies>...<dependency><groupId>ml.dmlc</groupId><artifactId>xgboost4j_${scala.binary.version}</artifactId><version>latest_version_num</version></dependency><dependency><groupId>ml.dmlc</groupId><artifactId>xgboost4j-spark_${scala.binary.version}</artifactId><version>latest_version_num</version></dependency>
</dependencies>

sbt

libraryDependencies ++= Seq("ml.dmlc" %% "xgboost4j" % "latest_version_num","ml.dmlc" %% "xgboost4j-spark" % "latest_version_num"
)
  • XGBoost4j-GPU/XGBoost4j-Spark-GPU

Maven

<properties>...<!-- 在包名中指定 Scala 版本 --><scala.binary.version>2.12</scala.binary.version>
</properties><dependencies>...<dependency><groupId>ml.dmlc</groupId><artifactId>xgboost4j-gpu_${scala.binary.version}</artifactId><version>latest_version_num</version></dependency><dependency><groupId>ml.dmlc</groupId><artifactId>xgboost4j-spark-gpu_${scala.binary.version}</artifactId><version>latest_version_num</version></dependency>
</dependencies>

sbt

libraryDependencies ++= Seq("ml.dmlc" %% "xgboost4j-gpu" % "latest_version_num","ml.dmlc" %% "xgboost4j-spark-gpu" % "latest_version_num"
)

这将从 Maven 中央仓库获取最新的稳定版本。

要启用 GPU 算法(device='cuda'),改用 xgboost4j-gpu_2.12xgboost4j-spark-gpu_2.12 这两个构件(请注意 gpu 后缀)。

注意

不支持 Windows 的 JVM 包

目前,XGBoost4J-Spark 不支持 Windows 平台,因为 Windows 上的分布式训练算法无法正常运行


快速开始

这是一个快速入门教程,其中包含一些片段,让您可以快速尝试在二分类任务的演示数据集上使用 XGBoost。

Python
from xgboost import XGBClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_reportdata = load_iris()
X_train, X_test, y_train, y_test = train_test_split(data['data'], data['target'], test_size=.2)# create model instance
bst = XGBClassifier(n_estimators=2, max_depth=2, learning_rate=1, objective='binary:logistic')# fit model
bst.fit(X_train, y_train)# make predictions
preds = bst.predict(X_test)classification_report(preds, y_test)

xcPSs.png

R
# load data
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
# fit model
bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nrounds = 2,nthread = 2, objective = "binary:logistic")
# predict
pred <- predict(bst, test$data)
Julia
using XGBoost
# read data
train_X, train_Y = readlibsvm("demo/data/agaricus.txt.train", (6513, 126))
test_X, test_Y = readlibsvm("demo/data/agaricus.txt.test", (1611, 126))
# fit model
num_round = 2
bst = xgboost(train_X, num_round, label=train_Y, eta=1, max_depth=2)
# predict
pred = predict(bst, test_X)
Scala
import ml.dmlc.xgboost4j.scala.DMatrix
import ml.dmlc.xgboost4j.scala.XGBoostobject XGBoostScalaExample {def main(args: Array[String]) {// read trainining data, available at xgboost/demo/dataval trainData =new DMatrix("/path/to/agaricus.txt.train")// define parametersval paramMap = List("eta" -> 0.1,"max_depth" -> 2,"objective" -> "binary:logistic").toMap// number of iterationsval round = 2// train the modelval model = XGBoost.train(trainData, paramMap, round)// run predictionval predTrain = model.predict(trainData)// save model to the file.model.saveModel("/local/path/to/model")}
}

参考

  • Awesome XGBoost
  • awesome-machine-learning
  • https://xgboost.readthedocs.io

这篇关于XGB-1:XGBoost安装及快速上手的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/674987

相关文章

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

linux安装、更新、卸载anaconda实践

《linux安装、更新、卸载anaconda实践》Anaconda是基于conda的科学计算环境,集成1400+包及依赖,安装需下载脚本、接受协议、设置路径、配置环境变量,更新与卸载通过conda命令... 目录随意找一个目录下载安装脚本检查许可证协议,ENTER就可以安装完毕之后激活anaconda安装更

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知

Mybatis-Plus 3.5.12 分页拦截器消失的问题及快速解决方法

《Mybatis-Plus3.5.12分页拦截器消失的问题及快速解决方法》作为Java开发者,我们都爱用Mybatis-Plus简化CRUD操作,尤其是它的分页功能,几行代码就能搞定复杂的分页查询... 目录一、问题场景:分页拦截器突然 “失踪”二、问题根源:依赖拆分惹的祸三、解决办法:添加扩展依赖四、分页

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R