使用MATLAB驱动USRP-N320实现OFDM自收自发

2024-02-03 12:20

本文主要是介绍使用MATLAB驱动USRP-N320实现OFDM自收自发,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、收发代码
  • 二、截取一帧 OFDM
  • 三、执行主函数
  • 四、运行结果
  • 五、资源自取


前言

本文作为实验结果记录及测试,方便后面回顾所做的工作。本文基于一台电脑和一台 USRP 设备实现了 OFDM 自发和自收功能
在这里插入图片描述


一、收发代码

ofdm_tx_rx_test.m
核心代码:

%% USRP initation
if strcmp(SYS.Platform, 'N320/N321')radio_tx = comm.SDRuTransmitter(...'Platform',             SYS.Platform, ...'SerialNum',            SYS.Address, ...'MasterClockRate',      SYS.MasterClockRate, ...'CenterFrequency',      SYS.USRPCenterFrequency, ...'Gain',                 SYS.USRPGain, ...'InterpolationFactor',  SYS.USRPInterpolationFactor);radio_rx = comm.SDRuReceiver(...'Platform',             SYS.Platform, ...'SerialNum',            SYS.Address, ...'MasterClockRate',      SYS.MasterClockRate, ...'CenterFrequency',      SYS.USRPCenterFrequency, ...'Gain',                 SYS.USRPGain, ...'DecimationFactor',     SYS.USRPDecimationFactor, ...'SamplesPerFrame',      SYS.USRPFrameLength, ...'OutputDataType',       'double');
elseerror(message('sdru:examples:UnsupportedPlatform',platform));
endradio_tx.ChannelMapping = [1];     % Use both TX channels
radio_tx.UnderrunOutputPort = true;radio_rx.ChannelMapping = [2];     % Use both TX channels
radio_rx.OverrunOutputPort = true;

二、截取一帧 OFDM

process_ofdm.m
核心代码:

function fft_data = process_ofdm(data_filename, Tx_cd)
load(data_filename)
% load('rx_recv_test.mat')
rxmimo2x2 = rx_recv_test;
%% 修改
Ng=64;
Nfft=256;
N_fft=Nfft;
P_f_inter=6;      %导频间隔
nn=1:Ng;
i=1;
for delay=0:5e5yy(i) = rxmimo2x2(nn+delay)'*(rxmimo2x2(delay+nn+Nfft));i=i+1;
end
plot(abs(yy))
val=zeros(1,1010);
pos=zeros(1,1010);
% 找到第一个峰
[val1,pos1]=max(yy(66910:66930));
val(1)=val1;
pos(1)=pos1+66910-1;
% 记录每个峰值对应的索引
for cnt=1:1010-1    [val1,pos1]=max(yy(pos(cnt)+250:pos(cnt)+390)); % 250和390是试出来的val(cnt+1)=val1;pos(cnt+1)=pos1+pos(cnt)+250;
end

这里需要手动修改几个参数,按照下面步骤做:

  • 注释第 1、2 两行,放开第 3 行
    在这里插入图片描述
  • 在第 17 行打个断点
    在这里插入图片描述
  • 运行程序 process_ofdm.m,其中黄框内的就是我们发送的一帧 OFDM
    在这里插入图片描述
  • 将图片放大,找到其中的第一个峰值,这里是 66923
    在这里插入图片描述
    因此上面程序第 19~22 行的 66910 和 66930 是为了将 66923 峰值索引包含在其范围内
% 找到第一个峰
[val1,pos1]=max(yy(66910:66930));
val(1)=val1;
pos(1)=pos1+66910-1;
  • 将第 17 行断点取消,运行 process_ofdm.m,保证程序运行无报错
  • 放开第 1、2 两行,注释第 3 行
    在这里插入图片描述

三、执行主函数

在这里我们对传输的 OFDM 进行误码率计算
main.m
核心代码:

%% 插入保护间隔、循环前缀
Tx_cd=[ifft_data(N_fft-N_cp+1:end,:);ifft_data];%把ifft的末尾N_cp个数补充到最前面%% 相关峰处理
fft_data = process_ofdm(data_filename, Tx_cd);%% 信道估计与插值(均衡)
data3=fft_data(1:N_fft,:); 
Rx_pilot=data3(P_f_station(1:end),:); %接收到的导频
h=Rx_pilot./pilot_seq; 
H=interp1( P_f_station(1:end)',h,data_station(1:end)','linear','extrap');%分段线性插值:插值点处函数值由连接其最邻近的两侧点的线性函数预测。对超出已知点集的插值点用指定插值方法计算函数值
% factor_64QAM = [3.5361    4.0446    4.7685    5.5782    6.7192    7.6219    8.5716    7.5685    6.4031    4.1531];%% 信道校正
data_aftereq=data3(data_station(1:end),:)./H;%% 并串转换
data_aftereq=reshape(data_aftereq,[],1);
data_aftereq=data_aftereq(1:length(spread_data));
data_aftereq=reshape(data_aftereq,N_sc,length(data_aftereq)/N_sc);%% 解扩
demspread_data = despread(data_aftereq,code);       % 数据解扩%% QPSK/16QAM/64QAM解调
De_Bit = demodulation(demspread_data, MODE);%% 信道译码(维特比译码)
trellis = poly2trellis(7,[133 171]);
rx_c_de = vitdec(De_Bit,trellis,tblen,'trunc','hard');   %硬判决%% 计算误码率
[err,Ber2] = biterr(De_Bit(1:length(code_data)),code_data);%译码前的误码率
[err, Ber] = biterr(rx_c_de(1:length(P_data)),P_data);%译码后的误码率

四、运行结果

以发送和接收的前 30 个数据为例:
在这里插入图片描述
误码率计算:
在这里插入图片描述

五、资源自取

链接:https://mbd.pub/o/bread/ZZqak5xq
在这里插入图片描述


我的qq:2442391036,欢迎交流!


这篇关于使用MATLAB驱动USRP-N320实现OFDM自收自发的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/674142

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置