Linux内存管理:(十一)页面分配之慢速路径

2024-02-03 07:52

本文主要是介绍Linux内存管理:(十一)页面分配之慢速路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章说明:

  • Linux内核版本:5.0

  • 架构:ARM64

  • 参考资料及图片来源:《奔跑吧Linux内核》

  • Linux 5.0内核源码注释仓库地址:

    zhangzihengya/LinuxSourceCode_v5.0_study (github.com)

1. 水位管理和分配优先级

页面分配器是按照zone的水位来管理的,zone的水位分成3个等级,分别是高水位(WMARK_HIGH)、低水位(WMARK_LOW) 以及最低警戒水位(WMARK_MIN)。最低警戒水位下的内存是系统预留的内存,通常情况下普通优先级的分配请求是不能访问这些内存的,但是在特殊情况下是可以用来救急的。页面分配器可以通过分配掩码的不同来访问最低警戒水位以下的内存,如__GFP_HIGH__GFP_ATOMIC以及__GFP_MEMALLOC等,如下表所示:

在这里插入图片描述

页面分配器的zone水位管理流程如下图所示:

在这里插入图片描述

补充说明:

  • 页面分配器中的快速和慢速路径是以低水位线能否成功分配内存为分界线的
  • 在慢速路径上,首先唤醒kswapd内核线程,异步扫描LRU链表和回收页面
  • 随着kswapd内核线程不断地回收内存,zone中的空闲内存会越来越多,当zone水位重新返回高水位之上时,zone的水位平衡了,kswapd内核线程停止工作重新进入睡眠状态
  • “页面分配之快速路径”见:Linux内存管理:(一)伙伴系统-CSDN博客,下文将详细介绍慢速路径

2. __alloc_pages_slowpath() 函数

__alloc_pages_slowpath()函数是页面分配慢速路径中的核心函数,该函数分配页面的流程如下图所示:

在这里插入图片描述

相应的__alloc_pages_slowpath()函数注解如下所示:

// gfp_mask:表示调用页面分配器时传递的分配掩码
// order:表示需要分配页面的大小,大小为 2 的 order 次幂个连续物理页面
// ac:表示页面分配器内部使用的控制参数数据结构
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,struct alloc_context *ac)
{// can_direct_reclaim 表示是否允许调用直接页面回收机制// 那些隐含了 __GFP_DIRECT_RECLAIM 标志位的分配掩码都会使用直接页面回收机制bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;// costly_order 表示会形成一定的内存分配压力。PAGE_ALLOC_COSTLY_ORDER 定义为3,如当分配请求// order 为 4 时,即要分配 64KB 大小的连续物理内存,会给页面分配器带来一定的内存压力const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;...// 检查是否在非中断上下文中滥用 __GFP_ATOMIC,使用 __GFP_ATOMIC 会输出一次警告// __GFP_ATOMIC 表示调用页面分配器的进程不能直接回收页面或者等待,调用者通常在中断上下文中。// 另外,__GFP_ATOMIC 是优先级比较高的分配行为,它允许访问部分的系统预留内存if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))gfp_mask &= ~__GFP_ATOMIC;retry_cpuset:...// gfp_to_alloc_flags() 重新设置分配掩码 gfp_maskalloc_flags = gfp_to_alloc_flags(gfp_mask);// 重新计算首选推荐的 zone,因为我们可能在快速路径中修改了内存节点掩码或者使用 cpuset 机制做了修改。ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,ac->high_zoneidx, ac->nodemask);...if (alloc_flags & ALLOC_KSWAPD)// 唤醒 kswapd 内核线程wake_all_kswapds(order, gfp_mask, ac);// 因为在 gfp_to_alloc_flags() 函数中调整了分配掩码 alloc_flags,所以将最低警戒水位(ALLOC_WMARK_MIN)// 作为判断条件。尝试以最低警戒水位为条件,判断是否能分配内存page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);if (page)goto got_pg;// 若以最低警戒水位为条件还不能分配成功,在 3 种情况下可以考虑尝试先调用直接内存规整机制来解决// 页面分配失败的问题://  1. 允许调用直接页面回收机制//  2. 高成本的分配需求 costly_order。这时,系统可能有足够的空闲内存,但是没有满足分配需求的连续页面,//     调用内存规整机制可能能解决这个问题。或者对于请求,分配不可迁移的多个连续物理页面(即order大于0)//  3. 不允许访问系统预留内存。gfp_pfmemalloc_allowed() 表示是否允许访问系统预留的内存,若返回 ALLOC_NO_WAIERMARKS,//     表示不用考虑水位;若返回0,表示不允许访问系统保留的内存// 同时满足上述 3 种情况,才会调用 __alloc_pages_direct_compact() 函数尝试内存规划if (can_direct_reclaim &&(costly_order ||(order > 0 && ac->migratetype != MIGRATE_MOVABLE))&& !gfp_pfmemalloc_allowed(gfp_mask)) {page = __alloc_pages_direct_compact(gfp_mask, order,alloc_flags, ac,INIT_COMPACT_PRIORITY,&compact_result);...}retry:// 确保 kswapd 内核线程不会进入睡眠,因此我们又重新唤醒它if (alloc_flags & ALLOC_KSWAPD)wake_all_kswapds(order, gfp_mask, ac);// __gfp_pfmemalloc_flags() 判断是否允许访问系统预留的内存,若返回 0,表示不允许访问预留内存reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);if (reserve_flags)alloc_flags = reserve_flags;// 原本的 alloc_flags 设置了 ALLOC_CPUSET,当 gfp_mask 设置了 __GFP_AaTOMIC 时会清除 ALLOC_CPUSET,// 表示调用者在中断上下文中。另外,reserve_flags 表示运行访问系统预留的内存。这两种情况下,我们重新计算// 首选推荐的 zone。if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {ac->nodemask = NULL;ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,ac->high_zoneidx, ac->nodemask);}// 重新调用 get_page_from_freelist() 尝试一次页面分配,若成功则返回退出page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);if (page)goto got_pg;// 若调用者不支持直接页面回收,那么我们没有其他可以做的了,跳转到 nopage 处if (!can_direct_reclaim)goto nopage;// 若当前进程的进程描述符设置了 PF_MEMALLOC,那么会在 __gfP_pfmemalloc_flags() 函数中返回// ALLOC_NO_WATERMARKS,表示完全忽略水位条件,可以访问系统全部的预留内存。在 get_page_from_freelist()// 不用检查 zone 的水位即可直接分配内存,既然忽略水位的情况下都不能分配出物理内存,那只能跳转到 nopage 标签处。if (current->flags & PF_MEMALLOC)goto nopage;// 调用直接页面回收机制。经过一轮的直接内存规整之后会尝试分配内存,若成功,则返回 page 数据结构page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,&did_some_progress);if (page)goto got_pg;// 调用直接内存规整机制。经过一轮的直接内存规整之后会尝试分配内存,若成功,则返回 page 数据结构page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,compact_priority, &compact_result);if (page)goto got_pg;...// 若要分配大块的物理内存并且分配掩码中没有设置 __GFP_RETRY_MAYFAIL,那说明分配行为中不允许我们继续重试if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))goto nopage;// should_reclaim_retry() 判断是否需要重试直接页面回收机制,若返回 0 则表示需要重试// did_some_progress 表示已经成功回收的页面数量if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,did_some_progress > 0, &no_progress_loops))goto retry;// should_compact_retry() 判断是否需要重试内存规整if (did_some_progress > 0 &&should_compact_retry(ac, order, alloc_flags,compact_result, &compact_priority,&compaction_retries))goto retry;// check_retry_cpuset() 判断是否重新尝试新的 cpuset,这个需要使能 CONFIG_CPUSETS 功能if (check_retry_cpuset(cpuset_mems_cookie, ac))goto retry_cpuset;// 所有的 cpuset 都重新尝试过后,若还是没法分配出所需要的内存,那么将使用 OOM killer 机制// __alloc_pages_may_oom() 函数会调用 OOM killer 机制来终止占用内存比较多的进程,从而释放出一些内存page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);if (page)goto got_pg;// 如果被终止的进程是当前进程并且 alloc_flags 为 ALLOC_OOM 或者 gfp_mask 为 __GFP_NOMEMALLOC,那么跳转// 到 nopage 标签处if (tsk_is_oom_victim(current) &&(alloc_flags == ALLOC_OOM ||(gfp_mask & __GFP_NOMEMALLOC)))goto nopage;// did_some_progress 表示我们刚才终止进程后释放了一些内存,因此跳转到 retry 标签处重新尝试分配内存if (did_some_progress) {no_progress_loops = 0;goto retry;}nopage:...// 若 gfp_mask 设置了 __GFP_NOFAIL,表示分配不能失败,那么只能想尽办法来重试if (gfp_mask & __GFP_NOFAIL) {...// 又一次尝试分配内存page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);if (page)goto got_pg;...}
// 若 gfp_mask 没有设置 __GFP_NOFAIL,只能调用 warn_alloc() 来宣告这次内存分配失败了
fail:warn_alloc(gfp_mask, ac->nodemask,"page allocation failure: order:%u", order);
got_pg:return page;
}

这篇关于Linux内存管理:(十一)页面分配之慢速路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/673447

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

Linux下MySQL数据库定时备份脚本与Crontab配置教学

《Linux下MySQL数据库定时备份脚本与Crontab配置教学》在生产环境中,数据库是核心资产之一,定期备份数据库可以有效防止意外数据丢失,本文将分享一份MySQL定时备份脚本,并讲解如何通过cr... 目录备份脚本详解脚本功能说明授权与可执行权限使用 Crontab 定时执行编辑 Crontab添加定

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象