SparseArray原理分析

2024-02-03 05:48
文章标签 分析 原理 sparsearray

本文主要是介绍SparseArray原理分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

概述

Google推荐新的数据结构SparseArray

SparseArray类上有一段注释:

  • SparseArrays map integers to Objects. Unlike a normal array of Objects,
  • there can be gaps in the indices. It is intended to be more memory efficient
  • than using a HashMap to map Integers to Objects, both because it avoids
  • auto-boxing keys and its data structure doesn’t rely on an extra entry object
  • for each mapping.

这段注释的意思是:使用int[]数组存放key,避免了HashMap中基本数据类型需要装箱的步骤,其次不使用额外的结构体(Entry),单个元素的存储成本下降。

构造方法

    private int[] mKeys;private Object[] mValues;private int mSize;/*** Creates a new SparseArray containing no mappings.*/public SparseArray() {this(10);}/*** Creates a new SparseArray containing no mappings that will not* require any additional memory allocation to store the specified* number of mappings.  If you supply an initial capacity of 0, the* sparse array will be initialized with a light-weight representation* not requiring any additional array allocations.*/public SparseArray(int initialCapacity) {if (initialCapacity == 0) {mKeys = EmptyArray.INT;mValues = EmptyArray.OBJECT;} else {mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity);mKeys = new int[mValues.length];}mSize = 0;}

初始化SparseArray只是简单地创建了两个数组,一个用来保存键,一个用来保存值。

put()

    /*** Adds a mapping from the specified key to the specified value,* replacing the previous mapping from the specified key if there* was one.*/public void put(int key, E value) {// 首先通过二分查找去key数组中查找要插入的key,返回索引int i = ContainerHelpers.binarySearch(mKeys, mSize, key);if (i >= 0) {// 如果i>=0说明数组中已经有了该key,则直接覆盖原来的值mValues[i] = value;} else {// 取反,这里得到的i应该是key应该插入的位置i = ~i;if (i < mSize && mValues[i] == DELETED) {// 如果索引小于当前已经存放的长度,并且这个位置上的值为DELETED(即被标记为删除的值)mKeys[i] = key;mValues[i] = value;return;}// 到这一步说明直接赋值失败,检查当前是否被标记待回收且当前存放的长度已经大于或等于了数组长度if (mGarbage && mSize >= mKeys.length) {// 回收数组中应该被干掉的值gc();// Search again because indices may have changed.// 重新再获取一下索引,因为数组发生了变化i = ~ContainerHelpers.binarySearch(mKeys, mSize, key);}// 最终在i位置上插入键与值,并且size +1mKeys = GrowingArrayUtils.insert(mKeys, mSize, i, key);mValues = GrowingArrayUtils.insert(mValues, mSize, i, value);mSize++;}}

get()

    public E get(int key, E valueIfKeyNotFound) {int i = ContainerHelpers.binarySearch(mKeys, mSize, key);if (i < 0 || mValues[i] == DELETED) {return valueIfKeyNotFound;} else {return (E) mValues[i];}}

get()中的代码就比较简单了,通过二分查找获取到key的索引,通过该索引来获取到value。

remove()

    public void remove(int key) {delete(key);}public void delete(int key) {// 找到该key的索引int i = ContainerHelpers.binarySearch(mKeys, mSize, key);// 如果存在,将该索引上的value赋值为DELETEDif (i >= 0) {if (mValues[i] != DELETED) {mValues[i] = DELETED;// 标记当前状态为待回收mGarbage = true;}}}

总结

优点

  • 避免了基本数据类型的装箱操作
  • 不需要额外的结构体,单个元素的存储成本更低
  • 数据量小的情况下,随机访问的效率更高

缺点

  • 插入操作需要复制数组,增删效率降低
  • 数据量巨大时,复制数组成本巨大,gc()成本也巨大
  • 数据量巨大时,查询效率也会明显下降

Google还提供了其他类似的数据结构,SparseIntArraySparseBooleanArraySparseLongArrayArrayMap等。

参考:SparseArray的使用及实现原理

这篇关于SparseArray原理分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/673145

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3