Python itertools模块:生成迭代器(实例分析)

2024-02-02 20:28

本文主要是介绍Python itertools模块:生成迭代器(实例分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

itertools 模块中主要包含了一些用于生成迭代器的函数。在 Python 的交互式解释器中先导入 itertools 模块,然后输入 [e for e in dir(itertools) if not e.startswith('_')] 命令,即可看到该模块所包含的全部属性和函数:

>>> [e for e in dir(itertools) if not e.startswith('_')]
['accumulate', 'chain', 'combinations', 'combinations_with_replacement', 'compress', 'count', 'cycle', 
'dropwhile', 'filterfalse', 'groupby', 'islice', 'permutations', 'product', 'repeat', 'starmap', 'takewhile','tee', 'zip_longest']

从上面的输出结果可以看出,itertools 模块中的不少函数都可以用于生成迭代器。

先看 itertools 模块中三个生成迭代器的函数:

count(start, [step]):生成 start, start+step, start+2*step,... 的迭代器,其中 step 默认为 1。比如使用 count(10) 生成的迭代器包含:10, 11 , 12 , 13, 14,...。

cycle(p):对序列 p 生成循环 p0, p1,..., p0, p1,... 的迭代器。比如使用 cycle('ABCD') 生成的迭代器包含:A,B,C,D,A,B,C,D,...。

repeat(elem [,n]):生成个 elem 元素重复的迭代器,如果指定了参数 n,则只生成 n 个 elem 元素。比如使用 repeat(10, 3) 生成的法代器包含:10, 10, 10。

下面程序示范了使用上面三个函数来生成迭代器:

import itertools as it
# count(10, 3)生成10、13、16……迭代器
for e in it.count(10, 3):print(e)# 用于跳出循环if e > 20:break
print('---------')
my_counter = 0
# cycle用于对序列生成循环的迭代器
for e in it.cycle(['Python', 'Kotlin', 'Swift']):print(e)# 用于跳出循环my_counter += 1if my_counter > 7:break
print('---------')
# repeat用于生成n个元素重复的迭代器
for e in it.repeat('Python', 3):print(e)

在 itertools 模块中还有一些常用的迭代器函数,如下所示:

accumulate(p[,func]):默认生成根据序列 p 元素累加的迭代器,p0, p0+p1, p0+p1+p2,...序列,如果指定了 func 函数,则用 func 函数来计算下一个元素的值。

chain(p, q, ...):将多个序列里的元素“链”在一起生成新的序列。

compress(data, selectors):根据 selectors 序列的值对 data 序列的元素进行过滤。如果 selector[0] 为真,则保留 data[0];如果 selector[1] 为真,则保留 data[1]......依此类推。

dropwhile(pred, seq):使用 pred 函数对 seq 序列进行过滤,从 seq 中第一个使用 pred 函数计算为 False 的元素开始,保留从该元素到序列结束的全部元素。

takewhile(pred, seq):该函数和上一个函数恰好相反。使用 pred 函数对 seq 序列进行过滤,从 seq 中第一个使用 pred 函数计算为 False 的元素开始,去掉从该元素到序列结束的全部元素。

filterfalse(pred, seq):使用 pred 函数对 seq 序列进行过滤,保留 seq 中使用 pred 计算为 True 的元素。比如 filterfalse(lambda x:x%2, range(10)),得到 0, 2, 4, 6, 8。

islice(seq, [start,] stop [, step]):其功能类似于序列的 slice 方法,实际上就是返回 seq[start:stop:step] 的结果。

starmap(func, seq):使用 func 对 seq 序列的每个元素进行计算,将计算结果作为新的序列元素。当使用 func 计算序列元素时,支持序列解包。比如 seq 序列的元素长度为 3,那么 func 可以是一个接收三个参数的函数,该函数将会根据这三个参数来计算新序列的元素。

zip_longest(p,q,...):将 p、q 等序列中的元素按索引合并成元组,这些元组将作为新序列的元素。

上面这些函数的测试程序如下:

import itertools as it
# 默认使用累加的方式计算下一个元素的值
for e in it.accumulate(range(6)):print(e, end=', ') # 0, 1, 3, 6, 10, 15
print('\n---------')
# 使用x*y的方式来计算迭代器下一个元素的值
for e in it.accumulate(range(1, 6), lambda x, y: x * y):print(e, end=', ') # 1, 2, 6, 24, 120
print('\n---------')
# 将两个序列“链”在一起,生成新的迭代器
for e in it.chain(['a', 'b'], ['Kotlin', 'Swift']):print(e, end=', ') # 'a', 'b', 'Kotlin', 'Swift'
print('\n---------')
# 根据第二个序列来筛选第一个序列的元素,
# 由于第二个序列只有中间两个元素为1(True),因此前一个序列只保留中间两个元素
for e in it.compress(['a', 'b', 'Kotlin', 'Swift'], [0, 1, 1, 0]):print(e, end=', ') # 只有: 'b', 'Kotlin'
print('\n---------')
# 获取序列中从长度不小于4的元素开始、到结束的所有元素
for e in it.dropwhile(lambda x:len(x)<4, ['a', 'b', 'Kotlin', 'x', 'y']):print(e, end=', ') # 只有: 'Kotlin', 'x', 'y'
print('\n---------')
# 去掉序列中从长度不小于4的元素开始、到结束的所有元素
for e in it.takewhile(lambda x:len(x)<4, ['a', 'b', 'Kotlin', 'x', 'y']):print(e, end=', ')  # 只有: 'a', 'b'
print('\n---------')
# 只保留序列中从长度不小于4的元素
for e in it.filterfalse(lambda x:len(x)<4, ['a', 'b', 'Kotlin', 'x', 'y']):print(e, end=', ') # 只有: 'Kotlin'
print('\n---------')
# 使用pow函数对原序列的元素进行计算,将计算结果作为新序列的元素
for e in it.starmap(pow, [(2,5), (3,2), (10,3)]):print(e, end=', ') # 32, 9, 1000
print('\n---------')
# 将'ABCD'、'xy'的元素按索引合并成元组,这些元组作为新序列的元素
# 长度不够的序列元素使用'-'字符代替
for e in it.zip_longest('ABCD', 'xy', fillvalue='-'):print(e, end=', ') # ('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-')

运行上面程序,可以看到如下输出结果:

0, 1, 3, 6, 10, 15,
---------
1, 2, 6, 24, 120,
---------
a, b, Kotlin, Swift,
---------
b, Kotlin,
---------
Kotlin, x, y,
---------
a, b,
---------
Kotlin,
---------
32, 9, 1000,
---------
('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-'),

在 itertools 模块中还有一些用于生成排列组合的工具函数:

product(p, q, ...[repeat= 1)]:用序列 p 、q 、... 中的元素进行排列组合,就相当于使用嵌套循环组合。

permutations(p[, r]):从序列 p 中取出 r 个元素组成全排列,将排列得到的元组作为新迭代器的元素。

combinations(p, r):从序列 p 中取出 r 个元素组成全组合,元素不允许重复,将组合得到的元组作为新迭代器的元素。

combinations with_replacement(p, r),从序列 p 中取出 r 个元素组成全组合,元素允许重复,将组合得到的元组作为新迭代器的元素。

如下程序示范了上面 4 个函数的用法:

import itertools as it
# 使用两个序列进行排列组合
for e in it.product('AB', 'CD'):print(''.join(e), end=', ') # AC, AD, BC, BD,
print('\n---------')
# 使用一个序列、重复2次进行全排列
for e in it.product('AB', repeat=2):print(''.join(e), end=', ') # AA, AB, BA, BB,
print('\n---------')
# 从序列中取2个元素进行排列
for e in it.permutations('ABCD', 2):print(''.join(e), end=', ') # AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC,
print('\n---------')
# 从序列中取2个元素进行组合、元素不允许重复
for e in it.combinations('ABCD', 2):print(''.join(e), end=', ') # AB, AC, AD, BC, BD, CD,
print('\n---------')
# 从序列中取2个元素进行组合、元素允许重复
for e in it.combinations_with_replacement('ABCD', 2):print(''.join(e), end=', ') # AA, AB, AC, AD, BB, BC, BD, CC, CD, DD,

上面程序用到了一个字符串的 join() 方法,该方法用于将元组的所有元素连接成一个字符串。运行程序,可以看到如下输出结果:

AC, AD, BC, BD,
---------
AA, AB, BA, BB,
---------
AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC,
---------
AB, AC, AD, BC, BD, CD,
---------
AA, AB, AC, AD, BB, BC, BD, CC, CD, DD,

这篇关于Python itertools模块:生成迭代器(实例分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/671860

相关文章

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Django HTTPResponse响应体中返回openpyxl生成的文件过程

《DjangoHTTPResponse响应体中返回openpyxl生成的文件过程》Django返回文件流时需通过Content-Disposition头指定编码后的文件名,使用openpyxl的sa... 目录Django返回文件流时使用指定文件名Django HTTPResponse响应体中返回openp

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安