Python itertools模块:生成迭代器(实例分析)

2024-02-02 20:28

本文主要是介绍Python itertools模块:生成迭代器(实例分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

itertools 模块中主要包含了一些用于生成迭代器的函数。在 Python 的交互式解释器中先导入 itertools 模块,然后输入 [e for e in dir(itertools) if not e.startswith('_')] 命令,即可看到该模块所包含的全部属性和函数:

>>> [e for e in dir(itertools) if not e.startswith('_')]
['accumulate', 'chain', 'combinations', 'combinations_with_replacement', 'compress', 'count', 'cycle', 
'dropwhile', 'filterfalse', 'groupby', 'islice', 'permutations', 'product', 'repeat', 'starmap', 'takewhile','tee', 'zip_longest']

从上面的输出结果可以看出,itertools 模块中的不少函数都可以用于生成迭代器。

先看 itertools 模块中三个生成迭代器的函数:

count(start, [step]):生成 start, start+step, start+2*step,... 的迭代器,其中 step 默认为 1。比如使用 count(10) 生成的迭代器包含:10, 11 , 12 , 13, 14,...。

cycle(p):对序列 p 生成循环 p0, p1,..., p0, p1,... 的迭代器。比如使用 cycle('ABCD') 生成的迭代器包含:A,B,C,D,A,B,C,D,...。

repeat(elem [,n]):生成个 elem 元素重复的迭代器,如果指定了参数 n,则只生成 n 个 elem 元素。比如使用 repeat(10, 3) 生成的法代器包含:10, 10, 10。

下面程序示范了使用上面三个函数来生成迭代器:

import itertools as it
# count(10, 3)生成10、13、16……迭代器
for e in it.count(10, 3):print(e)# 用于跳出循环if e > 20:break
print('---------')
my_counter = 0
# cycle用于对序列生成循环的迭代器
for e in it.cycle(['Python', 'Kotlin', 'Swift']):print(e)# 用于跳出循环my_counter += 1if my_counter > 7:break
print('---------')
# repeat用于生成n个元素重复的迭代器
for e in it.repeat('Python', 3):print(e)

在 itertools 模块中还有一些常用的迭代器函数,如下所示:

accumulate(p[,func]):默认生成根据序列 p 元素累加的迭代器,p0, p0+p1, p0+p1+p2,...序列,如果指定了 func 函数,则用 func 函数来计算下一个元素的值。

chain(p, q, ...):将多个序列里的元素“链”在一起生成新的序列。

compress(data, selectors):根据 selectors 序列的值对 data 序列的元素进行过滤。如果 selector[0] 为真,则保留 data[0];如果 selector[1] 为真,则保留 data[1]......依此类推。

dropwhile(pred, seq):使用 pred 函数对 seq 序列进行过滤,从 seq 中第一个使用 pred 函数计算为 False 的元素开始,保留从该元素到序列结束的全部元素。

takewhile(pred, seq):该函数和上一个函数恰好相反。使用 pred 函数对 seq 序列进行过滤,从 seq 中第一个使用 pred 函数计算为 False 的元素开始,去掉从该元素到序列结束的全部元素。

filterfalse(pred, seq):使用 pred 函数对 seq 序列进行过滤,保留 seq 中使用 pred 计算为 True 的元素。比如 filterfalse(lambda x:x%2, range(10)),得到 0, 2, 4, 6, 8。

islice(seq, [start,] stop [, step]):其功能类似于序列的 slice 方法,实际上就是返回 seq[start:stop:step] 的结果。

starmap(func, seq):使用 func 对 seq 序列的每个元素进行计算,将计算结果作为新的序列元素。当使用 func 计算序列元素时,支持序列解包。比如 seq 序列的元素长度为 3,那么 func 可以是一个接收三个参数的函数,该函数将会根据这三个参数来计算新序列的元素。

zip_longest(p,q,...):将 p、q 等序列中的元素按索引合并成元组,这些元组将作为新序列的元素。

上面这些函数的测试程序如下:

import itertools as it
# 默认使用累加的方式计算下一个元素的值
for e in it.accumulate(range(6)):print(e, end=', ') # 0, 1, 3, 6, 10, 15
print('\n---------')
# 使用x*y的方式来计算迭代器下一个元素的值
for e in it.accumulate(range(1, 6), lambda x, y: x * y):print(e, end=', ') # 1, 2, 6, 24, 120
print('\n---------')
# 将两个序列“链”在一起,生成新的迭代器
for e in it.chain(['a', 'b'], ['Kotlin', 'Swift']):print(e, end=', ') # 'a', 'b', 'Kotlin', 'Swift'
print('\n---------')
# 根据第二个序列来筛选第一个序列的元素,
# 由于第二个序列只有中间两个元素为1(True),因此前一个序列只保留中间两个元素
for e in it.compress(['a', 'b', 'Kotlin', 'Swift'], [0, 1, 1, 0]):print(e, end=', ') # 只有: 'b', 'Kotlin'
print('\n---------')
# 获取序列中从长度不小于4的元素开始、到结束的所有元素
for e in it.dropwhile(lambda x:len(x)<4, ['a', 'b', 'Kotlin', 'x', 'y']):print(e, end=', ') # 只有: 'Kotlin', 'x', 'y'
print('\n---------')
# 去掉序列中从长度不小于4的元素开始、到结束的所有元素
for e in it.takewhile(lambda x:len(x)<4, ['a', 'b', 'Kotlin', 'x', 'y']):print(e, end=', ')  # 只有: 'a', 'b'
print('\n---------')
# 只保留序列中从长度不小于4的元素
for e in it.filterfalse(lambda x:len(x)<4, ['a', 'b', 'Kotlin', 'x', 'y']):print(e, end=', ') # 只有: 'Kotlin'
print('\n---------')
# 使用pow函数对原序列的元素进行计算,将计算结果作为新序列的元素
for e in it.starmap(pow, [(2,5), (3,2), (10,3)]):print(e, end=', ') # 32, 9, 1000
print('\n---------')
# 将'ABCD'、'xy'的元素按索引合并成元组,这些元组作为新序列的元素
# 长度不够的序列元素使用'-'字符代替
for e in it.zip_longest('ABCD', 'xy', fillvalue='-'):print(e, end=', ') # ('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-')

运行上面程序,可以看到如下输出结果:

0, 1, 3, 6, 10, 15,
---------
1, 2, 6, 24, 120,
---------
a, b, Kotlin, Swift,
---------
b, Kotlin,
---------
Kotlin, x, y,
---------
a, b,
---------
Kotlin,
---------
32, 9, 1000,
---------
('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-'),

在 itertools 模块中还有一些用于生成排列组合的工具函数:

product(p, q, ...[repeat= 1)]:用序列 p 、q 、... 中的元素进行排列组合,就相当于使用嵌套循环组合。

permutations(p[, r]):从序列 p 中取出 r 个元素组成全排列,将排列得到的元组作为新迭代器的元素。

combinations(p, r):从序列 p 中取出 r 个元素组成全组合,元素不允许重复,将组合得到的元组作为新迭代器的元素。

combinations with_replacement(p, r),从序列 p 中取出 r 个元素组成全组合,元素允许重复,将组合得到的元组作为新迭代器的元素。

如下程序示范了上面 4 个函数的用法:

import itertools as it
# 使用两个序列进行排列组合
for e in it.product('AB', 'CD'):print(''.join(e), end=', ') # AC, AD, BC, BD,
print('\n---------')
# 使用一个序列、重复2次进行全排列
for e in it.product('AB', repeat=2):print(''.join(e), end=', ') # AA, AB, BA, BB,
print('\n---------')
# 从序列中取2个元素进行排列
for e in it.permutations('ABCD', 2):print(''.join(e), end=', ') # AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC,
print('\n---------')
# 从序列中取2个元素进行组合、元素不允许重复
for e in it.combinations('ABCD', 2):print(''.join(e), end=', ') # AB, AC, AD, BC, BD, CD,
print('\n---------')
# 从序列中取2个元素进行组合、元素允许重复
for e in it.combinations_with_replacement('ABCD', 2):print(''.join(e), end=', ') # AA, AB, AC, AD, BB, BC, BD, CC, CD, DD,

上面程序用到了一个字符串的 join() 方法,该方法用于将元组的所有元素连接成一个字符串。运行程序,可以看到如下输出结果:

AC, AD, BC, BD,
---------
AA, AB, BA, BB,
---------
AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC,
---------
AB, AC, AD, BC, BD, CD,
---------
AA, AB, AC, AD, BB, BC, BD, CC, CD, DD,

这篇关于Python itertools模块:生成迭代器(实例分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/671860

相关文章

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Java使用Swing生成一个最大公约数计算器

《Java使用Swing生成一个最大公约数计算器》这篇文章主要为大家详细介绍了Java使用Swing生成一个最大公约数计算器的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下... 目录第一步:利用欧几里得算法计算最大公约数欧几里得算法的证明情形 1:b=0情形 2:b>0完成相关代码第二步:加

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注