Python itertools模块:生成迭代器(实例分析)

2024-02-02 20:28

本文主要是介绍Python itertools模块:生成迭代器(实例分析),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

itertools 模块中主要包含了一些用于生成迭代器的函数。在 Python 的交互式解释器中先导入 itertools 模块,然后输入 [e for e in dir(itertools) if not e.startswith('_')] 命令,即可看到该模块所包含的全部属性和函数:

>>> [e for e in dir(itertools) if not e.startswith('_')]
['accumulate', 'chain', 'combinations', 'combinations_with_replacement', 'compress', 'count', 'cycle', 
'dropwhile', 'filterfalse', 'groupby', 'islice', 'permutations', 'product', 'repeat', 'starmap', 'takewhile','tee', 'zip_longest']

从上面的输出结果可以看出,itertools 模块中的不少函数都可以用于生成迭代器。

先看 itertools 模块中三个生成迭代器的函数:

count(start, [step]):生成 start, start+step, start+2*step,... 的迭代器,其中 step 默认为 1。比如使用 count(10) 生成的迭代器包含:10, 11 , 12 , 13, 14,...。

cycle(p):对序列 p 生成循环 p0, p1,..., p0, p1,... 的迭代器。比如使用 cycle('ABCD') 生成的迭代器包含:A,B,C,D,A,B,C,D,...。

repeat(elem [,n]):生成个 elem 元素重复的迭代器,如果指定了参数 n,则只生成 n 个 elem 元素。比如使用 repeat(10, 3) 生成的法代器包含:10, 10, 10。

下面程序示范了使用上面三个函数来生成迭代器:

import itertools as it
# count(10, 3)生成10、13、16……迭代器
for e in it.count(10, 3):print(e)# 用于跳出循环if e > 20:break
print('---------')
my_counter = 0
# cycle用于对序列生成循环的迭代器
for e in it.cycle(['Python', 'Kotlin', 'Swift']):print(e)# 用于跳出循环my_counter += 1if my_counter > 7:break
print('---------')
# repeat用于生成n个元素重复的迭代器
for e in it.repeat('Python', 3):print(e)

在 itertools 模块中还有一些常用的迭代器函数,如下所示:

accumulate(p[,func]):默认生成根据序列 p 元素累加的迭代器,p0, p0+p1, p0+p1+p2,...序列,如果指定了 func 函数,则用 func 函数来计算下一个元素的值。

chain(p, q, ...):将多个序列里的元素“链”在一起生成新的序列。

compress(data, selectors):根据 selectors 序列的值对 data 序列的元素进行过滤。如果 selector[0] 为真,则保留 data[0];如果 selector[1] 为真,则保留 data[1]......依此类推。

dropwhile(pred, seq):使用 pred 函数对 seq 序列进行过滤,从 seq 中第一个使用 pred 函数计算为 False 的元素开始,保留从该元素到序列结束的全部元素。

takewhile(pred, seq):该函数和上一个函数恰好相反。使用 pred 函数对 seq 序列进行过滤,从 seq 中第一个使用 pred 函数计算为 False 的元素开始,去掉从该元素到序列结束的全部元素。

filterfalse(pred, seq):使用 pred 函数对 seq 序列进行过滤,保留 seq 中使用 pred 计算为 True 的元素。比如 filterfalse(lambda x:x%2, range(10)),得到 0, 2, 4, 6, 8。

islice(seq, [start,] stop [, step]):其功能类似于序列的 slice 方法,实际上就是返回 seq[start:stop:step] 的结果。

starmap(func, seq):使用 func 对 seq 序列的每个元素进行计算,将计算结果作为新的序列元素。当使用 func 计算序列元素时,支持序列解包。比如 seq 序列的元素长度为 3,那么 func 可以是一个接收三个参数的函数,该函数将会根据这三个参数来计算新序列的元素。

zip_longest(p,q,...):将 p、q 等序列中的元素按索引合并成元组,这些元组将作为新序列的元素。

上面这些函数的测试程序如下:

import itertools as it
# 默认使用累加的方式计算下一个元素的值
for e in it.accumulate(range(6)):print(e, end=', ') # 0, 1, 3, 6, 10, 15
print('\n---------')
# 使用x*y的方式来计算迭代器下一个元素的值
for e in it.accumulate(range(1, 6), lambda x, y: x * y):print(e, end=', ') # 1, 2, 6, 24, 120
print('\n---------')
# 将两个序列“链”在一起,生成新的迭代器
for e in it.chain(['a', 'b'], ['Kotlin', 'Swift']):print(e, end=', ') # 'a', 'b', 'Kotlin', 'Swift'
print('\n---------')
# 根据第二个序列来筛选第一个序列的元素,
# 由于第二个序列只有中间两个元素为1(True),因此前一个序列只保留中间两个元素
for e in it.compress(['a', 'b', 'Kotlin', 'Swift'], [0, 1, 1, 0]):print(e, end=', ') # 只有: 'b', 'Kotlin'
print('\n---------')
# 获取序列中从长度不小于4的元素开始、到结束的所有元素
for e in it.dropwhile(lambda x:len(x)<4, ['a', 'b', 'Kotlin', 'x', 'y']):print(e, end=', ') # 只有: 'Kotlin', 'x', 'y'
print('\n---------')
# 去掉序列中从长度不小于4的元素开始、到结束的所有元素
for e in it.takewhile(lambda x:len(x)<4, ['a', 'b', 'Kotlin', 'x', 'y']):print(e, end=', ')  # 只有: 'a', 'b'
print('\n---------')
# 只保留序列中从长度不小于4的元素
for e in it.filterfalse(lambda x:len(x)<4, ['a', 'b', 'Kotlin', 'x', 'y']):print(e, end=', ') # 只有: 'Kotlin'
print('\n---------')
# 使用pow函数对原序列的元素进行计算,将计算结果作为新序列的元素
for e in it.starmap(pow, [(2,5), (3,2), (10,3)]):print(e, end=', ') # 32, 9, 1000
print('\n---------')
# 将'ABCD'、'xy'的元素按索引合并成元组,这些元组作为新序列的元素
# 长度不够的序列元素使用'-'字符代替
for e in it.zip_longest('ABCD', 'xy', fillvalue='-'):print(e, end=', ') # ('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-')

运行上面程序,可以看到如下输出结果:

0, 1, 3, 6, 10, 15,
---------
1, 2, 6, 24, 120,
---------
a, b, Kotlin, Swift,
---------
b, Kotlin,
---------
Kotlin, x, y,
---------
a, b,
---------
Kotlin,
---------
32, 9, 1000,
---------
('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-'),

在 itertools 模块中还有一些用于生成排列组合的工具函数:

product(p, q, ...[repeat= 1)]:用序列 p 、q 、... 中的元素进行排列组合,就相当于使用嵌套循环组合。

permutations(p[, r]):从序列 p 中取出 r 个元素组成全排列,将排列得到的元组作为新迭代器的元素。

combinations(p, r):从序列 p 中取出 r 个元素组成全组合,元素不允许重复,将组合得到的元组作为新迭代器的元素。

combinations with_replacement(p, r),从序列 p 中取出 r 个元素组成全组合,元素允许重复,将组合得到的元组作为新迭代器的元素。

如下程序示范了上面 4 个函数的用法:

import itertools as it
# 使用两个序列进行排列组合
for e in it.product('AB', 'CD'):print(''.join(e), end=', ') # AC, AD, BC, BD,
print('\n---------')
# 使用一个序列、重复2次进行全排列
for e in it.product('AB', repeat=2):print(''.join(e), end=', ') # AA, AB, BA, BB,
print('\n---------')
# 从序列中取2个元素进行排列
for e in it.permutations('ABCD', 2):print(''.join(e), end=', ') # AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC,
print('\n---------')
# 从序列中取2个元素进行组合、元素不允许重复
for e in it.combinations('ABCD', 2):print(''.join(e), end=', ') # AB, AC, AD, BC, BD, CD,
print('\n---------')
# 从序列中取2个元素进行组合、元素允许重复
for e in it.combinations_with_replacement('ABCD', 2):print(''.join(e), end=', ') # AA, AB, AC, AD, BB, BC, BD, CC, CD, DD,

上面程序用到了一个字符串的 join() 方法,该方法用于将元组的所有元素连接成一个字符串。运行程序,可以看到如下输出结果:

AC, AD, BC, BD,
---------
AA, AB, BA, BB,
---------
AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC,
---------
AB, AC, AD, BC, BD, CD,
---------
AA, AB, AC, AD, BB, BC, BD, CC, CD, DD,

这篇关于Python itertools模块:生成迭代器(实例分析)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/671860

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以