自动控制原理6.4:前馈校正

2024-02-02 07:30

本文主要是介绍自动控制原理6.4:前馈校正,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

参考书籍:《自动控制原理》(第七版).胡寿松主编.
《自动控制原理PDF版下载》



4.前馈校正
4.1 前置滤波组合校正

为了改善系统性能,在系统中常引入形如 G c ( s ) = ( s + z ) / ( s + p ) G_c(s)=(s+z)/(s+p) Gc(s)=(s+z)/(s+p)的串联校正网络,以改变系统的闭环极点;但 G c ( s ) G_c(s) Gc(s)同时会在系统闭环传递函数 Φ ( s ) \Phi(s) Φ(s)中增加一个新的零点,这个新增的零点可能会严重影响闭环系统的动态性能;此时,可考虑在系统的输入端串联一个前置滤波器,以消除新增闭环零点的不利影响;

实例分析:

E x a m p l e 1 : {\rm Example1:} Example1 设带有前置滤波器的控制系统如下图所示,其中,被控对象为 G 0 ( s ) = 1 s G_0(s)=\displaystyle\frac{1}{s} G0(s)=s1,串联校正网络为 P I {\rm PI} PI控制器, G c ( s ) = K 1 + K 2 s = K 1 s + K 2 s G_c(s)=K_1+\displaystyle\frac{K_2}{s}=\frac{K_1s+K_2}{s} Gc(s)=K1+sK2=sK1s+K2 G p ( s ) G_p(s) Gp(s)为前置滤波器。

20

系统设计要求为:

  1. 系统阻尼比 ζ d = 1 2 = 0.707 \zeta_d=\displaystyle\frac{1}{\sqrt{2}}=0.707 ζd=2 1=0.707
  2. 阶跃响应超调量 σ % ≤ 5 % \sigma\%≤5\% σ%5%
  3. 阶跃响应的调节时间 t s ≤ 0.6 s ( Δ = 2 % ) t_s≤0.6{\rm s}(\Delta=2\%) ts0.6s(Δ=2%)

试设计 K 1 , K 2 , G p ( s ) K_1,K_2,G_p(s) K1K2Gp(s)

解:

系统的闭环传递函数为:
Φ ( s ) = ( K 1 s + K 2 ) G p ( s ) s 2 + K 1 s + K 2 \Phi(s)=\frac{(K_1s+K_2)G_p(s)}{s^2+K_1s+K_2} Φ(s)=s2+K1s+K2(K1s+K2)Gp(s)
闭环系统特征方程为:
s 2 + K 1 s + K 2 = s 2 + 2 ζ d ω n s + ω n 2 = 0 s^2+K_1s+K_2=s^2+2\zeta_d\omega_ns+\omega_n^2=0 s2+K1s+K2=s2+2ζdωns+ωn2=0
根据系统对阻尼比和调节时间的要求,令 ζ d = 0.707 \zeta_d=0.707 ζd=0.707,且
t s = 4.4 ζ d ω n ≤ 0.6 ( Δ = 2 % ) t_s=\frac{4.4}{\zeta_d\omega_n}≤0.6(\Delta=2\%) ts=ζdωn4.40.6(Δ=2%)
可得: ζ d ω n ≥ 7.33 \zeta_d\omega_n≥7.33 ζdωn7.33,取: ζ d ω n = 8 \zeta_d\omega_n=8 ζdωn=8,可得: ω n = 8 2 \omega_n=8\sqrt{2} ωn=82 ;可得 P I {\rm PI} PI控制器参数为:
K 1 = 2 ζ d ω n = 16 , K 2 = ω n 2 = 128 K_1=2\zeta_d\omega_n=16,K_2=\omega_n^2=128 K1=2ζdωn=16,K2=ωn2=128
若不引入前置滤波器,相当于 G p ( s ) = 1 G_p(s)=1 Gp(s)=1,则系统的闭环传递函数为:
Φ ( s ) = 16 ( s + 8 ) s 2 + 16 s + 128 = ω n 2 z s + z s 2 + 2 ζ d ω n s + ω n 2 \Phi(s)=\frac{16(s+8)}{s^2+16s+128}=\frac{\omega_n^2}{z}\frac{s+z}{s^2+2\zeta_d\omega_ns+\omega_n^2} Φ(s)=s2+16s+12816(s+8)=zωn2s2+2ζdωns+ωn2s+z
此时系统为有零点二阶系统,根据: ζ d = 1 / 2 , ω n = 8 2 , z = 8 \zeta_d=1/\sqrt{2},\omega_n=8\sqrt{2},z=8 ζd=1/2 ωn=82 z=8,根据公式可得:
c ( t ) = 1 + r e − ζ d ω n t sin ⁡ ( ω n 1 − ζ d 2 t + ψ ) c(t)=1+r{\rm e}^{-\zeta_d\omega_nt}\sin(\omega_n\sqrt{1-\zeta_d^2}t+\psi) c(t)=1+reζdωntsin(ωn1ζd2 t+ψ)
计算其中参数:
r = z 2 − 2 ζ d ω n z + ω n 2 z 1 − ζ d 2 = 1.41 , β d = arctan ⁡ 1 − ζ d 2 ζ d = π 4 ψ = − π + arctan ⁡ ( ω n 1 − ζ d 2 z − ζ d ω n ) + arctan ⁡ ( 1 − ζ d 2 ζ d ) = − π 4 \begin{aligned} &r=\frac{\sqrt{z^2-2\zeta_d\omega_nz+\omega_n^2}}{z\sqrt{1-\zeta_d^2}}=1.41,\beta_d=\arctan{\frac{\sqrt{1-\zeta_d^2}}{\zeta_d}}=\frac{\pi}{4}\\\\ &\psi=-\pi+\arctan\left(\frac{\omega_n\sqrt{1-\zeta_d^2}}{z-\zeta_d\omega_n}\right)+\arctan\left(\frac{\sqrt{1-\zeta_d^2}}{\zeta_d}\right)=-\frac{\pi}{4} \end{aligned} r=z1ζd2 z22ζdωnz+ωn2 =1.41βd=arctanζd1ζd2 =4πψ=π+arctan(zζdωnωn1ζd2 )+arctan(ζd1ζd2 )=4π

无前置滤波器时,系统的动态性能如下:
t r = 0.75 ω n = 0.07 s ( z ζ d ω n = 1 , ω n t r = 0.75 ) t p = β d − ψ ω n 1 − ζ d 2 = 0.2 s σ % = r 1 − ζ d 2 e − ζ d ω n t p × 100 % = 20.0 % t s = 4 + ln ⁡ r ζ d ω n = 0.54 s ( Δ = 2 % ) \begin{aligned} &t_r=\frac{0.75}{\omega_n}=0.07s\space\space\left(\frac{z}{\zeta_d\omega_n}=1,\omega_nt_r=0.75\right)\\\\ &t_p=\frac{\beta_d-\psi}{\omega_n\sqrt{1-\zeta_d^2}}=0.2s\\\\ &\sigma\%=r\sqrt{1-\zeta_d^2}{\rm e}^{-\zeta_d\omega_nt_p}\times100\%=20.0\%\\\\ &t_s=\frac{4+\ln{r}}{\zeta_d\omega_n}=0.54s\space\space(\Delta=2\%) \end{aligned} tr=ωn0.75=0.07s  (ζdωnz=1,ωntr=0.75)tp=ωn1ζd2 βdψ=0.2sσ%=r1ζd2 eζdωntp×100%=20.0%ts=ζdωn4+lnr=0.54s  (Δ=2%)
由于新增零点的影响,超调量无法满足设计指标要求;

考虑采用前置滤波器 G p ( s ) G_p(s) Gp(s)来对消闭环传递函数 Φ ( s ) \Phi(s) Φ(s)中的零点,同时保持系统原有的直流增益 Φ ( 0 ) \Phi(0) Φ(0)不变,取:
G p ( s ) = 8 s + 8 G_p(s)=\frac{8}{s+8} Gp(s)=s+88
闭环传递函数变为:
Φ ( s ) = 128 s 2 + 16 s + 128 \Phi(s)=\frac{128}{s^2+16s+128} Φ(s)=s2+16s+128128
此时,系统属于无零点的二阶系统;
β = arccos ⁡ ζ = π 4 , ω d = ω n 1 − ζ 2 = 8 \beta=\arccos\zeta=\frac{\pi}{4},\omega_d=\omega_n\sqrt{1-\zeta^2}=8 β=arccosζ=4πωd=ωn1ζ2 =8
此时系统的动态性能指标:
t r = π − β ω d = 0.29 s , t p = π ω d = 0.39 s σ % = e − π ζ / 1 − ζ 2 × 100 % = 4.3 % , t s = 4.4 ζ ω n = 0.55 s ( Δ = 2 % ) \begin{aligned} &t_r=\frac{\pi-\beta}{\omega_d}=0.29{\rm s},t_p=\frac{\pi}{\omega_d}=0.39{\rm s}\\\\ &\sigma\%={\rm e}^{-\pi\zeta/\sqrt{1-\zeta^2}}\times100\%=4.3\%,t_s=\frac{4.4}{\zeta\omega_n}=0.55{\rm s}(\Delta=2\%) \end{aligned} tr=ωdπβ=0.29stp=ωdπ=0.39sσ%=eπζ/1ζ2 ×100%=4.3%ts=ζωn4.4=0.55s(Δ=2%)

可知,系统设计指标要求全部满足;

21

4.2 最小节拍组合校正(简单了解)

最小节拍响应:指以最小的超调量快速达到并保持在稳态响应允许波动范围内的时间响应;

21

当系统输入为阶跃信号时,允许波动范围取为稳态响应的 ± 2 % ±2\% ±2%误差带,系统的调节时间就是响应首次进入波动带的时间;

最小节拍响应的特征:

  • 在阶跃输入作用下,稳态误差为零;
  • 阶跃响应具有最小的上升时间和调节时间;
  • 阶跃响应超调量 < 2 % <2\% <2%

这篇关于自动控制原理6.4:前馈校正的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669916

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

java程序远程debug原理与配置全过程

《java程序远程debug原理与配置全过程》文章介绍了Java远程调试的JPDA体系,包含JVMTI监控JVM、JDWP传输调试命令、JDI提供调试接口,通过-Xdebug、-Xrunjdwp参数配... 目录背景组成模块间联系IBM对三个模块的详细介绍编程使用总结背景日常工作中,每个程序员都会遇到bu

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja