Hadoop(二)CentOS7.5搭建Hadoop2.7.6完全分布式集群

2024-02-02 06:50

本文主要是介绍Hadoop(二)CentOS7.5搭建Hadoop2.7.6完全分布式集群,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一 完全分布式集群(单点)

Hadoop官方地址:http://hadoop.apache.org/

1  准备3台客户机

1.1防火墙,静态IP,主机名

关闭防火墙,设置静态IP,主机名此处略,参考  Linux之CentOS7.5安装及克隆

1.2 修改host文件

我们希望三个主机之间都能够使用主机名称的方式相互访问而不是IP,我们需要在hosts中配置其他主机的host。因此我们在主机的/etc/hosts下均进行如下配置:

[root@node21 ~]# vi /etc/hosts
配置主机host
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.100.21 node21
192.168.100.22 node22
192.168.100.23 node23
将配置发送到其他主机(同时在其他主机上配置)
[root@node21 ~]# scp -r /etc/hosts root@node22:/etc/
[root@node21 ~]# scp -r /etc/hosts root@node23:/etc/
测试
[root@node21 ~]# ping node21
[root@node21 ~]# ping node22
[root@node21 ~]# ping node23

1.3 添加用户账号 

在所有的主机下均建立一个账号admin用来运行hadoop ,并将其添加至sudoers中
[root@node21 ~]# useradd admin    添加用户通过手动输入修改密码
[root@node21 ~]# passwd  admin  更改用户 admin 的密码
123456  passwd: 所有的身份验证令牌已经成功更新。
设置admin用户具有root权限  修改 /etc/sudoers 文件,找到下面一行,在root下面添加一行,如下所示:
[root@node21 ~]# visudo
## Allow root to run any commands anywhere
root    ALL=(ALL)     ALL
admin   ALL=(ALL)     ALL
修改完毕  :wq! 保存退出,现在可以用admin帐号登录,然后用命令 su - ,切换用户即可获得root权限进行操作。 

1.4 /opt目录下创建文件夹 

1)在root用户下创建module、software文件夹
[root@node21 opt]# mkdir module
[root@node21 opt]# mkdir software
2)修改module、software文件夹的所有者
[root@node21 opt]# chown admin:admin module
[root@node21 opt]# chown admin:admin software
3)查看module、software文件夹的所有者
[root@node21 opt]# ll
total 0
drwxr-xr-x. 5 admin admin 64 May 27 00:24 module
drwxr-xr-x. 2 admin admin 267 May 26 11:56 software

2   安装配置jdk1.8 

[deng@node21 ~]# rpm -qa|grep java   #查询是否安装java软件:
[deng@node21 ~]# rpm -e –nodeps 软件包   #如果安装的版本低于1.7,卸载该jdk
在线安装   wget --no-check-certificate --no-cookies --header "Cookie: oraclelicense=accept-securebackup-cookie"  http://download.oracle.com/otn/java/jdk/8u144-b01/090f390dda5b47b9b721c7dfaa008135/jdk-8u144-linux-x64.tar.gz
这里使用本地下载然后 xftp上传到  /opt/software/ 下 
[root@node21 software]# tar zxvf  jdk-8u171-linux-x64.tar.gz  -C  /opt/module/
[root@node21 module]# mv jdk1.8.0_171 jdk1.8
设置JAVA_HOME  
vi /etc/profile
export  JAVA_HOME=/opt/module/jdk1.8
export  PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/sbin
source  /etc/profile
向其他节点复制jdk
[root@node21 ~]# scp -r /opt/module/jdk1.8 root@node22:`pwd`
[root@node21 ~]# scp -r /opt/module/jdk1.8 root@node23:`pwd`
配置各个主机下jdk的环境变量,由于我的电脑上linux都是新安装的,环境变量相同,因此直接复制到了其他主机上。如果不同的主机的环境变量不同,请手动设置
[root@node21 ~]# scp /etc/profile root@node22:/etc/
[root@node21 ~]# scp /etc/profile root@node23:/etc/
在每个主机上都重新编译一下/etc/profile
[root@node21]# source /etc/profile
测试  java -version

3   安装hadoop集群

3.1 集群部署规划

节点名称 NN1 NN2 DN RM NM
node21NameNode   DataNode NodeManager
node22 SecondaryNameNodeDataNodeResourceManagerNodeManager
node23  DataNode NodeManager

3.2 设置SSH免密钥

关于ssh免密码的设置,要求每两台主机之间设置免密码,自己的主机与自己的主机之间也要求设置免密码。 这项操作可以在admin用户下执行,执行完毕公钥在/home/admin/.ssh/id_rsa.pub

[admin@node21 ~]# ssh-keygen -t rsa
[admin@node21 ~]# ssh-copy-id node21
[admin@node21 ~]# ssh-copy-id node22
[admin@node21 ~]# ssh-copy-id node23

node1与node2为namenode节点要相互免秘钥   HDFS的HA 

[admin@node22 ~]# ssh-keygen -t rsa
[admin@node22 ~]# ssh-copy-id node22
[admin@node22 ~]# ssh-copy-id node21
[admin@node22 ~]# ssh-copy-id node23

node2与node3为yarn节点要相互免秘钥  YARN的HA 

[admin@node23 ~]# ssh-keygen -t rsa
[admin@node23 ~]# ssh-copy-id node23
[admin@node23 ~]# ssh-copy-id node21
[admin@node23 ~]# ssh-copy-id node22 

3.3  解压安装hadoop 

[admin@node21 software]# tar zxvf hadoop-2.7.6.tar.gz -C /opt/module/

4   配置hadoop集群

注意:配置文件在hadoop2.7.6/etc/hadoop/下

4.1 修改core-site.xml

[admin@node21 hadoop]$ vi core-site.xml
<configuration>
<!-- 指定HDFS中NameNode的地址 --><property><name>fs.defaultFS</name><value>hdfs://node21:9000</value></property>
<!-- 指定hadoop运行时产生文件的存储目录 --><property><name>hadoop.tmp.dir</name><value>/opt/module/hadoop-2.7.6/data/full/tmp</value></property>
</configuration>

4.2 修改hadoop-env.sh 

[admin@node21  hadoop]$ vi hadoop-env.sh 
修改 export JAVA_HOME=/opt/module/jdk1.8

4.3 修改hdfs-site.xml 

[admin@node21  hadoop]$ vi hdfs-site.xml
<configuration>
<!-- 设置dfs副本数,不设置默认是3个   --><property><name>dfs.replication</name><value>2</value></property>
<!-- 设置secondname的端口   --><property><name>dfs.namenode.secondary.http-address</name><value>node22:50090</value></property>
</configuration>

4.4 修改slaves 

[admin@node21  hadoop]$ vi slaves
node21
node22
node23

4.5 修改mapred-env.sh 

[admin@node21 hadoop]$ vi mapred-env.sh
修改 export JAVA_HOME=/opt/module/jdk1.8

4.6 修改mapred-site.xml 

[admin@node21 hadoop]# mv mapred-site.xml.template mapred-site.xml
[admin@node21 hadoop]$ vi mapred-site.xml
<configuration>
<!-- 指定mr运行在yarn上 --><property><name>mapreduce.framework.name</name><value>yarn</value></property>
</configuration>

4.7 修改yarn-env.sh 

[admin@node21 hadoop]$ vi yarn-env.sh
修改 export JAVA_HOME=/opt/module/jdk1.8

4.8 修改yarn-site.xml 

[admin@node21 hadoop]$ vi yarn-site.xml
<configuration>
<!-- reducer获取数据的方式 --><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property>
<!-- 指定YARN的ResourceManager的地址 --><property><name>yarn.resourcemanager.hostname</name><value>node22</value></property>
</configuration>

4.9 分发hadoop到节点 

[admin@node21 module]# scp -r hadoop-2.7.6/ admin@node22:`pwd`
[admin@node21 module]# scp -r hadoop-2.7.6/ admin@node23:`pwd`

4.10 配置环境变量 

[admin@node21 ~]$ sudo vi /etc/profile
末尾追加
export  HADOOP_HOME=/opt/module/hadoop-2.7.6
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
编译生效  source  /etc/profile

5  启动验证集群

5.1 启动集群

 如果集群是第一次启动,需要格式化namenode

[admin@node21 hadoop-2.7.6]$ hdfs namenode -format 

启动Hdfs:

[admin@node21 ~]# start-dfs.sh
Starting namenodes on [node21]
node21: starting namenode, logging to /opt/module/hadoop-2.7.6/logs/hadoop-root-namenode-node21.out
node21: starting datanode, logging to /opt/module/hadoop-2.7.6/logs/hadoop-root-datanode-node21.out
node22: starting datanode, logging to /opt/module/hadoop-2.7.6/logs/hadoop-root-datanode-node22.out
node23: starting datanode, logging to /opt/module/hadoop-2.7.6/logs/hadoop-root-datanode-node23.out
Starting secondary namenodes [node22]
node22: starting secondarynamenode, logging to /opt/module/hadoop-2.7.6/logs/hadoop-root-secondarynamenode-node22.out

启动Yarn: 注意:Namenode和ResourceManger如果不是同一台机器,不能在NameNode上启动 yarn,应该在ResouceManager所在的机器上启动yarn。 

[admin@node22 ~]# start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /opt/module/hadoop-2.7.6/logs/yarn-root-resourcemanager-node22.out
node21: starting nodemanager, logging to /opt/module/hadoop-2.7.6/logs/yarn-root-nodemanager-node21.out
node23: starting nodemanager, logging to /opt/module/hadoop-2.7.6/logs/yarn-root-nodemanager-node23.out
node22: starting nodemanager, logging to /opt/module/hadoop-2.7.6/logs/yarn-root-nodemanager-node22.out

jps查看进程 

[admin@node21 ~]# jps
1440 NameNode
1537 DataNode
1811 NodeManager
1912 Jps
[admin@node22 ~]# jps
1730 Jps
1339 ResourceManager
1148 DataNode
1198 SecondaryNameNode
1439 NodeManager
[admin@node23 ~]# jps
1362 Jps
1149 DataNode
1262 NodeManager

web页面访问

5.2 Hadoop启动停止方式

1)各个服务组件逐一启动
分别启动hdfs组件: hadoop-daemon.sh  start|stop  namenode|datanode|secondarynamenode启动yarn:     yarn-daemon.sh    start|stop  resourcemanager|nodemanager2)各个模块分开启动(配置ssh是前提)常用
start|stop-dfs.sh     start|stop-yarn.sh3)全部启动(不建议使用)
start|stop-all.sh

5.3 集群时间同步 

参考Ntp时间服务器与定时任务Crontab     https://www.cnblogs.com/frankdeng/p/9005691.html

二 完全分布式集群(HA)

1 环境准备

1.1 修改IP

1.2 修改主机名及主机名和IP地址的映射

1.3 关闭防火墙

1.4 ssh免密登录

1.5 安装JDK,配置环境变量

2 集群规划

节点名称NNJJNDNZKFCZKRMNM
node21NameNodeJournalNodeDataNodeZKFCZookeeper NodeManager
node22NameNodeJournalNodeDataNodeZKFCZooKeeperResourceManagerNodeManager
node23 JournalNodeDataNode ZooKeeperResourceManagerNodeManager

3 安装Zookeeper集群

安装详解参考 : CentOS7.5搭建Zookeeper集群与命令行操作

4 安装配置Hadoop集群

4.1 解压安装Hadoop

解压 hadoop-2.7.6到/opt/module/目录下

[admin@node21 software]# tar zxvf hadoop-2.7.6.tar.gz -C /opt/module/

4.2 配置Hadoop集群

配置文件都在/opt/module/hadoop-2.7.6/etc/hadoop/下

4.2.1 修改hadoop-env.sh mapred-env.sh ,yarn-env.sh 的JAVA环境变量

export JAVA_HOME=/opt/module/jdk1.8

4.2.2 修改 core-site.xml 

[admin@node21 hadoop]$ vi core-site.xml
<configuration>
<!-- 把两个NameNode的地址组装成一个集群mycluster -->
<property><name>fs.defaultFS</name><value>hdfs://mycluster</value>
</property>
<!-- 指定hadoop运行时产生文件的存储目录 -->
<property><name>hadoop.tmp.dir</name><value>/opt/module/hadoop-2.7.6/data/ha/tmp</value>
</property>
<!-- 指定ZKFC故障自动切换转移 -->
<property><name>ha.zookeeper.quorum</name><value>node21:2181,node22:2181,node23:2181</value>
</property>
</configuration> 

4.2.3 修改hdfs-site.xml 

[admin@node21  hadoop]$ vi hdfs-site.xml
<configuration>
<!-- 设置dfs副本数,默认3个 -->
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<!-- 完全分布式集群名称 -->
<property><name>dfs.nameservices</name><value>mycluster</value>
</property>
<!-- 集群中NameNode节点都有哪些 -->
<property><name>dfs.ha.namenodes.mycluster</name><value>nn1,nn2</value>
</property>
<!-- nn1的RPC通信地址 -->
<property><name>dfs.namenode.rpc-address.mycluster.nn1</name><value>node21:8020</value>
</property>
<!-- nn2的RPC通信地址 -->
<property><name>dfs.namenode.rpc-address.mycluster.nn2</name><value>node22:8020</value>
</property>
<!-- nn1的http通信地址 -->
<property><name>dfs.namenode.http-address.mycluster.nn1</name><value>node21:50070</value>
</property>
<!-- nn2的http通信地址 -->
<property><name>dfs.namenode.http-address.mycluster.nn2</name><value>node22:50070</value>
</property>
<!-- 指定NameNode元数据在JournalNode上的存放位置 -->
<property><name>dfs.namenode.shared.edits.dir</name><value>qjournal://node21:8485;node22:8485;node23:8485/mycluster</value>
</property>
<!-- 配置隔离机制,即同一时刻只能有一台服务器对外响应 -->
<property><name>dfs.ha.fencing.methods</name><value>sshfence</value>
</property>
<!-- 使用隔离机制时需要ssh无秘钥登录-->
<property><name>dfs.ha.fencing.ssh.private-key-files</name><value>/home/admin/.ssh/id_rsa</value>
</property>
<!-- 声明journalnode服务器存储目录-->
<property><name>dfs.journalnode.edits.dir</name><value>/opt/module/hadoop-2.7.6/data/ha/jn</value>
</property>
<!-- 关闭权限检查-->
<property><name>dfs.permissions.enable</name><value>false</value>
</property>
<!-- 访问代理类:client,mycluster,active配置失败自动切换实现方式-->
<property><name>dfs.client.failover.proxy.provider.mycluster</name><value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!-- 配置自动故障转移-->
<property><name>dfs.ha.automatic-failover.enabled</name><value>true</value>
</property> 
<configuration>

4.2.4 修改mapred-site.xml 

[admin@node1 hadoop]# mv mapred-site.xml.template mapred-site.xml
[admin@node1 hadoop]# vi  mapred-site.xml
<configuration>
<!-- 指定mr框架为yarn方式 --><property><name>mapreduce.framework.name</name><value>yarn</value></property>
<!-- 指定mr历史服务器主机,端口 --><property>   <name>mapreduce.jobhistory.address</name>   <value>node21:10020</value>   </property>   
<!-- 指定mr历史服务器WebUI主机,端口 --><property>   <name>mapreduce.jobhistory.webapp.address</name>   <value>node21:19888</value>   </property>
<!-- 历史服务器的WEB UI上最多显示20000个历史的作业记录信息 -->    <property><name>mapreduce.jobhistory.joblist.cache.size</name><value>20000</value></property>
<!--配置作业运行日志 --> <property><name>mapreduce.jobhistory.done-dir</name><value>${yarn.app.mapreduce.am.staging-dir}/history/done</value></property><property><name>mapreduce.jobhistory.intermediate-done-dir</name><value>${yarn.app.mapreduce.am.staging-dir}/history/done_intermediate</value></property><property><name>yarn.app.mapreduce.am.staging-dir</name><value>/tmp/hadoop-yarn/staging</value></property>
</configuration>

4.2.5 修改 slaves 

[admin@node21  hadoop]$ vi slaves
node21
node22
node23

4.2.6 修改yarn-site.xml  

[admin@node21 hadoop]$ vi yarn-site.xml
<configuration>
<!-- reducer获取数据的方式 --><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value></property><!--启用resourcemanager ha--><property><name>yarn.resourcemanager.ha.enabled</name><value>true</value></property><!--声明两台resourcemanager的地址--><property><name>yarn.resourcemanager.cluster-id</name><value>rmCluster</value></property><property><name>yarn.resourcemanager.ha.rm-ids</name><value>rm1,rm2</value></property><property><name>yarn.resourcemanager.hostname.rm1</name><value>node22</value></property><property><name>yarn.resourcemanager.hostname.rm2</name><value>node23</value></property><!--指定zookeeper集群的地址--><property><name>yarn.resourcemanager.zk-address</name><value>node21:2181,node22:2181,node23:2181</value></property><!--启用自动恢复--><property><name>yarn.resourcemanager.recovery.enabled</name><value>true</value></property><!--指定resourcemanager的状态信息存储在zookeeper集群--><property><name>yarn.resourcemanager.store.class</name>    <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value></property>
</configuration>

4.2.6 拷贝hadoop到其他节点 

[admin@node21 module]# scp -r hadoop-2.7.6/ admin@node22:/opt/module/
[admin@node21 module]# scp -r hadoop-2.7.6/ admin@node23:/opt/module/

4.2.7 配置Hadoop环境变量 

[admin@node21 ~]$ sudo vi /etc/profile
末尾追加
export  HADOOP_HOME=/opt/module/hadoop-2.7.6
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
编译生效  source  /etc/profile

5 启动集群

1)在各个JournalNode节点上,输入以下命令启动journalnode服务:(前提zookeeper集群已启动)

[admin@node21 ~]$ hadoop-daemon.sh start journalnode
[admin@node22 ~]$ hadoop-daemon.sh start journalnode
[admin@node23 ~]$ hadoop-daemon.sh start journalnode

启动Journalnde是为了创建/data/ha/jn,此时jn里面是空的

 

2)在[nn1]上,对namenode进行格式化,并启动:

[admin@node21 ~]$ hdfs namenode -format

格式化namenode,此时jn里面会产生集群ID等信息

另外,/data/ha/tmp也会产生如下信息

启动nn1上namenode

[admin@node21 current]$ hadoop-daemon.sh  start namenode
starting namenode, logging to /opt/module/hadoop-2.7.6/logs/hadoop-admin-namenode-node21.out

3)在[nn2]上,同步nn1的元数据信息: 

[admin@node22 ~]$ hdfs namenode -bootstrapStandby

4)启动[nn2]:

[admin@node22 ~]$ hadoop-daemon.sh start namenode

5)在[nn1]上,启动所有datanode 

[admin@node21 ~]$ hadoop-daemons.sh start datanode

6)查看web页面此时显示 

 

7)手动切换状态,在各个NameNode节点上启动DFSZK Failover Controller,先在哪台机器启动,哪个机器的NameNode就是Active NameNode

[admin@node21 ~]$ hadoop-daemin.sh start zkfc
[admin@node22 ~]$ hadoop-daemin.sh start zkfc

或者强制手动其中一个节点变为Active

[admin@node21 data]$ hdfs haadmin -transitionToActive nn1 --forcemanual 

Web页面查看

 

8)自动切换状态,需要初始化HA在Zookeeper中状态,先停掉hdfs服务,然后随便找一台zookeeper的安装节点

[admin@node21 current]$  hdfs zkfc -formatZK

查看,此时会产生一个hadoop-ha的目录

[root@node22 ~]# zkCli.sh

启动hdfs服务,查看namenode状态

[admin@node21 ~]$ start-hdfs.sh

9)验证

(1)将Active NameNode进程kill

kill -9 namenode的进程id

(2)将Active NameNode机器断开网络

service network stop

如果测试不成功,则可能是配置错误。检查zkfc守护进程以及NameNode守护进程的日志,以便进一步诊断问题。

10)启动yarn

(1)在node22中执行:

[admin@node22 ~]$ start-yarn.sh

(2)在node23中执行: 

[admin@node23 ~]$ yarn-daemon.sh start resourcemanager

(3)查看服务状态 

[admin@node22 ~]$ yarn rmadmin -getServiceState rm1
active
[admin@node22 ~]$ yarn rmadmin -getServiceState rm2
standby

4) 验证高可用(略)

6 测试集群

1)查看进程

[admin@node21 ~]$ start-dfs.sh 
[admin@node22 ~]$ start-yarn.sh 
[admin@node23 ~]$ yarn-daemon.sh start resourcemanager
[admin@node21 ~]$ jps
11298 NodeManager
10868 DataNode
11065 JournalNode
11210 DFSZKFailoverController
1276 QuorumPeerMain
11470 NameNode
11436 Jps[admin@node22 ~]$ jps
7168 DataNode
7476 ResourceManager
7941 Jps
7271 JournalNode
1080 QuorumPeerMain
7352 DFSZKFailoverController
7594 NodeManager
7099 NameNode[admin@node23 ~]$ jps
3554 ResourceManager
3204 DataNode
3301 JournalNode
3606 Jps
3384 NodeManager
1097 QuorumPeerMain

2)任务提交

 2.1 上传文件到集群

[admin@node21 ~]$ hadoop fs -mkdir -p /user/admin/input
[admin@node21 ~]$ mkdir -p  /opt/wcinput/
[admin@node21 ~]$ vi  /opt/wcinput/wc.txt 
[admin@node21 ~]$ hadoop fs -put  /opt/wcinput/wc.txt /user/admin/input

wc.txt 文本内容为 

hadoop spark   storm
hbase hive sqoop
hadoop flink flume
spark hadoop  

2.2 上传文件后查看文件存放在什么位置 

文件存储路径
[admin@node21 subdir0]$ pwd
/opt/module/hadoop-2.7.6/data/ha/tmp/dfs/data/current/BP-1244373306-192.168.100.21-1527653416622/current/finalized/subdir0/subdir0
查看文件内容
[admin@node21 subdir0]$ cat blk_1073741825
hadoop spark   storm
hbase hive sqoop
hadoop flink flume
spark hadoop   

2.3 下载文件 

[admin@node21 opt]$ hadoop fs -get /user/admin/input/wc.txt

2.4 执行wordcount程序 

[admin@node21 ~]$ hadoop jar /opt/module/hadoop-2.7.6/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.6.jar wordcount /user/admin/input /user/admin/output

执行过程 

18/05/30 02:51:39 INFO input.FileInputFormat: Total input paths to process : 1
18/05/30 02:51:40 INFO mapreduce.JobSubmitter: number of splits:1
18/05/30 02:51:40 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1527660052824_0001
18/05/30 02:51:42 INFO impl.YarnClientImpl: Submitted application application_1527660052824_0001
18/05/30 02:51:43 INFO mapreduce.Job: The url to track the job: http://node22:8088/proxy/application_1527660052824_0001/
18/05/30 02:51:43 INFO mapreduce.Job: Running job: job_1527660052824_0001
18/05/30 02:52:33 INFO mapreduce.Job: Job job_1527660052824_0001 running in uber mode : false
18/05/30 02:52:33 INFO mapreduce.Job:  map 0% reduce 0%
18/05/30 02:53:04 INFO mapreduce.Job:  map 100% reduce 0%
18/05/30 02:53:17 INFO mapreduce.Job:  map 100% reduce 100%
18/05/30 02:53:19 INFO mapreduce.Job: Job job_1527660052824_0001 completed successfully
18/05/30 02:53:19 INFO mapreduce.Job: Counters: 49File System CountersFILE: Number of bytes read=102FILE: Number of bytes written=250513FILE: Number of read operations=0FILE: Number of large read operations=0FILE: Number of write operations=0HDFS: Number of bytes read=188HDFS: Number of bytes written=64HDFS: Number of read operations=6HDFS: Number of large read operations=0HDFS: Number of write operations=2Job Counters Launched map tasks=1Launched reduce tasks=1Data-local map tasks=1Total time spent by all maps in occupied slots (ms)=25438Total time spent by all reduces in occupied slots (ms)=10815Total time spent by all map tasks (ms)=25438Total time spent by all reduce tasks (ms)=10815Total vcore-milliseconds taken by all map tasks=25438Total vcore-milliseconds taken by all reduce tasks=10815Total megabyte-milliseconds taken by all map tasks=26048512Total megabyte-milliseconds taken by all reduce tasks=11074560Map-Reduce FrameworkMap input records=4Map output records=11Map output bytes=112Map output materialized bytes=102Input split bytes=105Combine input records=11Combine output records=8Reduce input groups=8Reduce shuffle bytes=102Reduce input records=8Reduce output records=8Spilled Records=16Shuffled Maps =1Failed Shuffles=0Merged Map outputs=1GC time elapsed (ms)=558CPU time spent (ms)=8320Physical memory (bytes) snapshot=308072448Virtual memory (bytes) snapshot=4159348736Total committed heap usage (bytes)=165810176Shuffle ErrorsBAD_ID=0CONNECTION=0IO_ERROR=0WRONG_LENGTH=0WRONG_MAP=0WRONG_REDUCE=0File Input Format Counters Bytes Read=83File Output Format Counters Bytes Written=64

下载查看 

[admin@node21 wcoutput]$ hadoop fs -get /user/admin/output/part-r-00000
[admin@node21 wcoutput]$ ll
total 4
-rw-r--r-- 1 admin admin 64 May 30 02:58 part-r-00000
[admin@node21 wcoutput]$ cat part-r-00000 
flink    1
flume    1
hadoop    3
hbase    1
hive    1
spark    2
sqoop    1
storm    1

三 配置集群常见错误

1 自动故障转移错误

1.1 两台namenode之间不能通信,kill掉一台Active的namenode节点,另外一台standby不能切换Active

查看namenode日志 或者zkfc日志,nn1 连接 nn2 8020失败

 原因分析:若服务器是最小化安装CentOS时,有可能系统没有fuster程序,那么跳过这个安装步骤直接进行后面的操作时,将有可能出现以下问题:

node21作为主节点时,kill掉node21上的NameNode和ResourceManager进程时,可以实现故障转移,node22将从stanby状态自动变成active状态;但是当node22作为主节点时,若kill掉node22上的进程,node21上的进程状态却还是stanby,并不能实现故障自动转移。原因是我们在 hdfs-site.xml中配置了当集群需要故障自动转移时采用SSH方式进行,而因为缺少fuster程序,将在zkfc的日志文件中发现如下错误

PATH=$PATH:/sbin:/usr/sbin fuser -v -k -n tcp 9000 via ssh: bash: fuser: 未找到命令
Unable to fence service by any configured method
java.lang.RuntimeException: Unable to fence NameNode at node22/192.168.100.22:8020

提示未找到fuster程序,导致无法进行fence,所以可以通过如下命令来安装,Psmisc软件包中包含了fuster程序: 

//分别在node21、node22、node23上执行
sudo yum install psmisc

重启Hadoop服务验证成功。

2HDFS启动警告信息

Hadoop2.7.6在安装成功后,start-dfs.sh启动后出现警告提示:

WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

在Hadoop2.7以后的版本中,$HADOOP_HOME/lib/native 包下的文件都改为了64位,不存在版本差异化的问题,这里解决方案是在文件hadoop-env.sh中增加如下一行信息

export HADOOP_OPTS="-Djava.library.path=${HADOOP_HOME}/lib/native"  

再次启动就没有警告提示了。 

四 Hadoop集群群启脚本

1启动服务

zookeeper   hadoop 

2脚本

1 编写启动集群脚本  vi start-cluster.sh

#!/bin/bash
echo  "******************  开始启动集群所有节点服务 ****************"
echo  "******************  正在启动zookeeper   *********************"
for i in admin@node21 admin@node22 admin@node23
dossh $i '/opt/module/zookeeper-3.4.12/bin/zkServer.sh start'
done
echo  "********************     正在启动HDFS     *******************"
ssh   admin@node21 '/opt/module/hadoop-2.7.6/sbin/start-dfs.sh'
echo  "*********************    正在启动YARN   ******************"
ssh   admin@node22 '/opt/module/hadoop-2.7.6/sbin/start-yarn.sh'
echo  "***************  正在node21上启动JobHistoryServer   *********"
ssh   admin@node21 '/opt/module/hadoop-2.7.6/sbin/mr-jobhistory-daemon.sh start historyserver'
echo  "******************      集群启动成功      *******************"*

2 编写关闭集群脚本 vi stop-cluster.sh 

#!/bin/bash
echo  "*************      开在关闭集群所有节点服务      *************"
echo  "*************  正在node21上关闭JobHistoryServer  *************"
ssh   admin@node21 '/opt/module/hadoop-2.7.6/sbin/mr-jobhistory-daemon.sh stop historyserver'
echo  "*************         正在关闭YARN               *************"
ssh   admin@node22 '/opt/module/hadoop-2.7.6/sbin/stop-yarn.sh'
echo  "*************         正在关闭HDFS               *************"
ssh   admin@node21 '/opt/module/hadoop-2.7.6/sbin/stop-dfs.sh'
echo  "*************         正在关闭zookeeper          *************"
for i in admin@node21 admin@node22 admin@node23
dossh $i '/opt/module/zookeeper-3.4.12/bin/zkServer.sh stop'
done

3 编写查看集群jps进程脚本utils.sh

#!/bin/bash 
echo  "************* 开始启动JPS  **********"
echo  "************* node21的jps **********"
ssh   admin@node21  'jps'
echo  "************* node22的jps **********"
ssh   admin@node22  'jps'
echo  "************* node23的jps **********"
ssh   admin@node23  'jps'

3赋权限给脚本

chmod +x 脚本名称

4其他问题

Linux执行.sh文件,提示No such file or directory的问题的解决方法:

原因:在windows中写好shell脚本测试正常,但是上传到 Linux 上以脚本方式运行命令时提示No such file or directory错误,那么一般是文件格式是dos格式的缘故,改成unix 格式即可。一般有如下几种修改办法。

 1)在Windows下转换: 
利用一些编辑器如UltraEdit或EditPlus等工具先将脚本编码转换,再放到Linux中执行。转换方式如下(UltraEdit):File-->Conversions-->DOS->UNIX即可。 
2)方法 
用vi打开该sh文件,输入:
:set ff 
回车,显示fileformat=dos,重新设置下文件格式:
:set ff=unix 
保存退出: 
:wq 
再执行,就可以了

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

这篇关于Hadoop(二)CentOS7.5搭建Hadoop2.7.6完全分布式集群的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669798

相关文章

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

redis+lua实现分布式限流的示例

《redis+lua实现分布式限流的示例》本文主要介绍了redis+lua实现分布式限流的示例,可以实现复杂的限流逻辑,如滑动窗口限流,并且避免了多步操作导致的并发问题,具有一定的参考价值,感兴趣的可... 目录为什么使用Redis+Lua实现分布式限流使用ZSET也可以实现限流,为什么选择lua的方式实现

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间

使用DeepSeek搭建个人知识库(在笔记本电脑上)

《使用DeepSeek搭建个人知识库(在笔记本电脑上)》本文介绍了如何在笔记本电脑上使用DeepSeek和开源工具搭建个人知识库,通过安装DeepSeek和RAGFlow,并使用CherryStudi... 目录部署环境软件清单安装DeepSeek安装Cherry Studio安装RAGFlow设置知识库总