关于查询区间最小没出现的自然数的cdq方法的可行性探讨

2024-02-02 03:38

本文主要是介绍关于查询区间最小没出现的自然数的cdq方法的可行性探讨,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述这道题显然有一个可持久化线段树的做法。

首先我们意识到这个极广的值域没有什么用处。

我们首先想到必然存在一个 x \ x  x使答案为 x \ x  x或者 [ 1 , x − 1 ] \ [1,x-1]  [1,x1]中的最小的不存在的数字。

所以首先我们想到找到这个 x \ x  x然后把没有必要的数字全部删掉,这样剩下的数字必然再 [ 1 , n ] \ [1,n]  [1,n]中。

之后我们想到将 a i \ a_{i}  ai i \ i  i点存在转换为 a i \ a_{i}  ai [ 1 , i − 1 ] , [ i + 1 , n ] \ [1,i-1],[i+1,n]  [1,i1],[i+1,n]中不存在,设 i \ i  i的两个值为 q = i − 1 , w = i + 1 \ q=i-1,w=i+1  q=i1,w=i+1,这样任意询问 [ l , r ] \ [l,r]  [l,r]就是 q ≥ r \ q \ge r  qr或者 w ≤ l \ w \le l  wl的数字中的最小值。这显然是一个一维偏序问题,那么我们显然可以将每个询问看做两个,直接桶排序即可。复杂度 O ( n ) \ O(n)  O(n)

实际上这种方法仅限于值的两两不同。

如果相同的值是存在的,那么我们依然可以将问题改变。显然如果同时存在两个值相同 a i = a j , i < j \ a_{i}=a_{j},i<j  ai=aj,i<j,那么显然为 a i \ a_{i}  ai [ 1 , i − 1 ] , [ i + 1 , j − 1 ] , [ j + 1 , n ] \ [1,i-1],[i+1,j-1],[j+1,n]  [1,i1],[i+1,j1],[j+1,n]不存在,我们将其拆为三个操作, q 1 = 1 , w 1 = i − 1 , q 2 = i + 1 , w 2 = j − 1 , q 3 = j + 1 , w 3 = n \ q_{1}=1,w_{1}=i-1,q_{2}=i+1,w_{2}=j-1,q_{3}=j+1,w_{3}=n  q1=1w1=i1,q2=i+1,w2=j1,q3=j+1,w3=n。对于每个询问 [ l , r ] \ [l,r]  [l,r],即 q ≤ l \ q \le l  ql w ≥ r \ w \ge r  wr的最小值。那么我们先按照 q \ q  q或者 l \ l  l排序,cdq中按照 r \ r  r或者 w \ w  w,然后求解即可。 O ( n log ⁡ 2 n ) \ O(n \log_{2}{n})  O(nlog2n)

#include<bits/stdc++.h>
using namespace std;
inline int read()
{char ch = getchar(); int x = 0;while (!isdigit(ch)) ch = getchar();while (isdigit(ch)){ x = x*10+ch-'0'; ch = getchar(); }return x;
}
int n,a[300300],b[300300],m,xxx,tot=0,head,tail,ans[200200];
struct nobe
{int op,l,r,w,id;
}q[600600],tmp[600600];
inline bool cmp(nobe a,nobe b)
{return (a.l^b.l) ? (a.l<b.l) : (a.op<b.op);
}
inline void cdq(int l,int r)
{if(l==r) return ;int mid=(l+r)>>1;cdq(l,mid);cdq(mid+1,r);int i=l,j=mid+1,ccnt=0,sum=999999999;while(j<=r){while((q[i].r>=q[j].r)&&(i<=mid)){tmp[++ccnt]=q[i];if(q[i].op&1){sum=min(sum,q[i].w);}++i;}tmp[++ccnt]=q[j];if(q[j].op^1){ans[q[j].id]=min(ans[q[j].id],sum);}++j;}while(i<=mid){tmp[++ccnt]=q[i];++i;}i=1;while(i<=ccnt){q[l+i-1]=tmp[i];++i;}
}
int main()
{memset(b,0,sizeof(b));n=read();m=read();int i=1;while(i<=n){a[i]=read();if(a[i]<=n) ++b[a[i]];++i;}i=-1;while(i<=n){if(b[i+1]) ++i;else break;}xxx=i+1;i=0;while(i<xxx){b[i]=0;++i;}i=1;while(i<=n){if(a[i]<xxx){if((i^1)&&(b[a[i]]^i-1)){q[++tot]=(nobe){1,b[a[i]]+1,i-1,a[i],0};}b[a[i]]=i;}++i;}i=0;while(i<xxx){if(b[i]^n) q[++tot]=(nobe){1,b[i]+1,n,i,0};++i;}i=1;while(i<=m){int l,r;l=read();r=read();ans[i]=xxx;q[++tot]=(nobe){2,l,r,0,i};++i; }sort(q+1,q+tot+1,cmp);cdq(1,tot);i=1;while(i<=m){printf("%d\n",ans[i]);++i;}return 0;
}

实际上只出现一次的数字依然可以桶排序来解决,将大大优化常数。

这篇关于关于查询区间最小没出现的自然数的cdq方法的可行性探讨的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669361

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

JavaScript对象转数组的三种方法实现

《JavaScript对象转数组的三种方法实现》本文介绍了在JavaScript中将对象转换为数组的三种实用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录方法1:使用Object.keys()和Array.map()方法2:使用Object.entr

SpringBoot中ResponseEntity的使用方法举例详解

《SpringBoot中ResponseEntity的使用方法举例详解》ResponseEntity是Spring的一个用于表示HTTP响应的全功能对象,它可以包含响应的状态码、头信息及响应体内容,下... 目录一、ResponseEntity概述基本特点:二、ResponseEntity的基本用法1. 创

java中判断json key是否存在的几种方法

《java中判断jsonkey是否存在的几种方法》在使用Java处理JSON数据时,如何判断某一个key是否存在?本文就来介绍三种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目http://www.chinasem.cn录第一种方法是使用 jsONObject 的 has 方法

java中ssh2执行多条命令的四种方法

《java中ssh2执行多条命令的四种方法》本文主要介绍了java中ssh2执行多条命令的四种方法,包括分号分隔、管道分隔、EOF块、脚本调用,可确保环境配置生效,提升操作效率,具有一定的参考价值,感... 目录1 使用分号隔开2 使用管道符号隔开3 使用写EOF的方式4 使用脚本的方式大家平时有没有遇到自