深度学习之Focus层

2024-02-02 03:20
文章标签 学习 深度 focus

本文主要是介绍深度学习之Focus层,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达


文章导读

本文的知识点来源于用YOLOv5做一些道路目标检测时,看到一个名曰Focus的层,发现是一种下采样的方法。所以在此科普一下深度学习中有哪些下采样以及各自优缺点。

小编近期备考PMP,所以分享频率减缓,各位小伙伴见谅~~~不过发现已经把写公号做知识分享作为一种习惯,哈哈,希望能长期坚持下去。

1

深度学习有哪些下采样的方式?

YOLOv5中提到了一种Focus层,高大上的名称背后感觉就是特殊的下采样而已。不过原理逻辑虽然简单,但也体现了作者的创造力,不然小编咋就没想到呢~~~

提到下采样,在这里小编列举一下深度学习中都接触过哪些下采样方式:

最早接触到的应该是池化操作,如下图所示:

860ba769a93639e916e5e12a6f9659c4.png

包括平均池化和最大池化两种,平均池化有种平滑滤波的味道,通过求取滑窗内的元素平均值作为当前特征点,根据滑窗的尺寸控制下采样的力度,尺寸越大采样率越高,但是边缘信息损失越大。最大池化类似锐化滤波,突出滑窗内的细节点。但是不论哪种池化操作,都是以牺牲部分信息为代价,换取数据量的减少。

步长大于1的卷积也可以实现池化功能,如下图所示:

a0822d860b4a48d9d0cdb9771062aa35.png

卷积操作可以获得图像像素之间的特征相关性,采用步长大于1的跳跃可以实现数据降维,但是跳跃采样造成的相邻像素点特征丢失是否会影响最终效果。

池化作为一种强先验操作人为设定了降采样规则,而卷积层是通过参数自己学习出降采样算子,具体对比可以参考这篇文章:Striving for simplicity: The All Convolutional Net.

2

下采样在神经网络中的作用?

下采样在神经网络中主要是为了减少参数量达到降维的作用,同时还能增加局部感受野。

但是下采样的过程不可避免的伴随信息丢失,尤其是在分割任务要经历下采样编码和上采样解码的过程,那么如何在不损失数据信息的情况下,增大深层特征图的感受野呢?

18年的时候出了个空洞卷积的玩意,如下图所示,根据打洞的间距把卷积核进行膨胀,在没有增加参数量的情况下,增大了感受野,从某种角度来看也算是一种局部下采样的过程。

fc5e220f6fd8fefaf4a9e1a655634212.png

图a,b,c均是3×3尺寸卷积核,图(a)的空洞为0,每个核算子之间紧挨着没有间隔,等价于普通的卷积,每次运算学习9个参数,感受野即3×3;图(b)的空洞为1,同样学习9个参数,但是每个算子之间空一格,感受野即7×7;图(c)的空洞为3,仍然学习9个参数,但是每个算子之间空三格,感受野即15×15。

如何计算空洞卷积的感受野呢?

这里给出一个常规的计算公式:

size=(dilate_rate-1)  ×(kernel_size-1)+  kernel_size

3

YOLOv2之PassThrough层

上面我们聊了一些下采样的方法和优缺点,但是在目标检测网络中还有两种特殊的下采样,PassThrough首次出现在YOLOv2网络,将相邻的特征堆积在不同的通道中,目的是将大尺度特征图下采样后与小尺度特征图进行融合,从而增加小目标检测的精确度。如下图所示:

96a6dbc9da5577fe0954a894ebd58b89.png

小编对这张图和Focus的图对比了半天,简直一模一样,暂时没发现这两个层有何区别?通过Tensorflow提供的API接口tf.space_to_depth测试了下Tensor的输出,确实是隔行采样再拼接的形式。有小伙伴知道差异的欢迎+v指导。

4

YOLOv5之Focus层

Focus层非常类似PassThrough层,同样是采用切片操作把高分辨率的图片/特征图拆分成多个低分辨率的图片/特征图,如下图所示:隔行采样+拼接

b3cea47094ebb708a14c9a3ae84bf663.png

将4×4×3的Tensor通过间隔采样拆分成4份,在通道维度上进行拼接生成2×2×12的Tensor。Focus层将w-h平面上的信息转换到通道维度,再通过卷积的方式提取不同特征。采用这种方式可以减少下采样带来的信息损失。

小编觉得从细节的角度此方式确实比stride为2的卷积或者池化要精致,用在PC端建模可能有一些精度提升。但是如果用在工程上,考虑到大多数芯片厂商未必提供Focus层或者自定义接口,从部署的角度可以牺牲Focus带来的0.1%的提升更换成Conv或Pool层。

下载1:OpenCV-Contrib扩展模块中文版教程在「小白学视觉」公众号后台回复:扩展模块中文教程,即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。下载2:Python视觉实战项目52讲
在「小白学视觉」公众号后台回复:Python视觉实战项目,即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。下载3:OpenCV实战项目20讲
在「小白学视觉」公众号后台回复:OpenCV实战项目20讲,即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。交流群欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

这篇关于深度学习之Focus层的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/669326

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.