Python实战:使用DrissionPage库爬取拉勾网职位信息

2024-02-02 00:12

本文主要是介绍Python实战:使用DrissionPage库爬取拉勾网职位信息,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

DrissionPage库,号称可以把Selenium按在地上摩擦!

常规情况下,我们借助 requests 库爬取不加密的网站,使用 Selenium 库爬取加密的网站。

requests 效率高,但是解密难度大。Selenium 库可以实现网页自动化,不用解密,但是爬虫效率不高。

那有没有什么库既效率高,又可以网页自动化。

DrissionPage 库他来了,号称可以把 Selenium 按在地上摩擦!

DrissionPage 库结合了 requests 和 selenium 的特长,既实现了和 Selenium 库类似的网页自动化效果,又提升了爬虫效率。同时实现代码“写得快”和“跑得快”。

DrissionPage 库在码云上有 3.4k 个 Star,很牛了。

今天我们就使用 DrissionPage 库实战,爬取拉勾网职位信息。

一、简介

DrissionPage 是一个基于 python 的网页自动化工具。它既能控制浏览器,也能收发数据包,还能把两者合而为一。可兼顾浏览器自动化的便利性和 requests 的高效率。它功能强大,内置无数人性化设计和便捷功能。它的语法简洁而优雅,代码量少,对新手友好。

用 requests 做数据采集面对要登录的网站时,要分析数据包、JS 源码,构造复杂的请求,往往还要应付验证码、JS 混淆、签名参数等反爬手段,门槛较高,开发效率不高。使用浏览器,可以很大程度上绕过这些坑,但浏览器运行效率不高。

因此,这个库设计初衷,是将它们合而为一,同时实现“写得快”和“跑得快”。能够在不同需要时切换相应模式,并提供一种人性化的使用方法,提高开发和运行效率。除了合并两者,本库还以网页为单位封装了常用功能,提供非常简便的操作和语句,使用户可减少考虑细节,专注功能实现。以简单的方式实现强大的功能,使代码更优雅。

以前的版本是对 selenium 进行重新封装实现的。从 3.0 开始,作者另起炉灶,对底层进行了重新开发,摆脱对 selenium 的依赖,增强了功能,提升了运行效率。

二、入门案例

1、启动浏览器

默认状态下,程序会自动在系统内查找 Chrome 路径。

执行以下代码,浏览器启动并且访问百度网页。

from DrissionPage import ChromiumPagepage = ChromiumPage()
page.get('https://www.baidu.com/')

浏览器顺利打开了百度的网页。

2、爬取码云网站项目

网址:https://gitee.com/explore/all

这个示例的目标,要获取所有库的名称和链接,为避免对网站造成压力,只采集 3 页。

打开网址,按F12,我们可以看到页面 html 如下:

爬虫代码如下:

from DrissionPage import SessionPage# 创建页面对象
page = SessionPage()# 爬取3页
for i in range(1, 4):# 访问某一页的网页page.get(f'https://gitee.com/explore/all?page={i}')# 获取所有开源库<a>元素列表links = page.eles('.title project-namespace-path')# 遍历所有<a>元素for link in links:# 打印链接信息print(link.text, link.link)

Pycharm 控制台输出如下,项目名称和链接都爬取到了:

三、定位元素

爬网页简单来说就是提取一些页面元素,定位到元素,就可以进行输出、保存等操作。

一些常用的元素定位方式如下,基本逻辑和 Selenium 方式类似,但是更简洁。

# 根据 class 或 id 查找
page.ele('#ele_id')  # 等价于 page.ele('@id=ele_id')
page.ele('#:ele_id')  # 等价于 page.ele('@id:ele_id')
page.ele('.ele_class')  # 等价于 page.ele('@class=ele_class')
page.ele('.:ele_class')  # 等价于 page.ele('@class:ele_class')# 根据 tag name 查找
page.ele('tag:li')  # 查找第一个 li 元素  
page.eles('tag:li')  # 查找所有 li 元素  # 根据 tag name 及属性查找
page.ele('tag:div@class=div_class')  # 查找 class 为 div_class 的 div 元素

四、实战案例:爬拉勾网

在拉勾网爬取 Python 职位的招聘信息,获取公司、职位、薪资等信息。

目标网址https://www.lagou.com/wn/zhaopin?kd=Python&pn=2

分析网址 url,只有pn参数是变化的,通过改变pn参数的值就可以实现翻页效果。

根据定位元素的方法,分析网页元素信息,可以定位到职位 div、company、company、money 这些信息。定位方法如下:

divs = page.eles('tag:div@class=item__10RTO')
company = div.ele('.company-name__2-SjF')
company = div.ele('#openWinPostion')
money = div.ele('.money__3Lkgq')

定位到元素,就可以写爬虫代码了,还是比较简单的。在我公众号多看几篇 Python 实战,应该可以毫无压力写出代码,下面直接给出完整爬虫代码。代码如下:

from DrissionPage import SessionPage
import pandas as pd# contents列表用来存放所有爬取到的职位信息
contents = []# 创建页面对象
page = SessionPage()# 爬取30页
for i in range(1, 31):# 访问某一页的网页page.get(f'https://www.lagou.com/wn/zhaopin?kd=Python&pn={i}')# 查找 class 为 item__10RTO 的 div 元素divs = page.eles('tag:div@class=item__10RTO')# 提取公司、职位、薪资for div in divs:company = div.ele('.company-name__2-SjF')position = div.ele('#openWinPostion')money = div.ele('.money__3Lkgq')contents.append([company.text, position.text, money.text])print("正在爬取第", i, "页,总计获取到", len(contents), "条职位信息")# 保存到csv文件
name = ['company', 'position', 'money']
contents_df = pd.DataFrame(columns=name, data=contents)
contents_df.to_csv("拉勾网Python职位信息.csv", index=False)

Pycharm 控制台输出如下,爬取了 30 个网页,总计获取到 450 条职位信息:

打开 csv 文件查看数据,截图如下:

五、项目链接

项目主页:https://g1879.gitee.io/drissionpagedocs/

文档地址https://g1879.gitee.io/drissionpagedocs/

六、总结

通过这个实战案例,不得不说 DrissionPage 这个库真的牛逼。不用安装浏览器驱动了,元素定位也更简洁,爬虫效率也很高。

当然,本文只是一个入门,更多使用技巧可以到作者的项目主页食用,项目文档写的也很清晰易懂。

本文首发在“程序员coding”公众号,欢迎关注与我一起交流学习。

这篇关于Python实战:使用DrissionPage库爬取拉勾网职位信息的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/668908

相关文章

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

Java Lambda表达式的使用详解

《JavaLambda表达式的使用详解》:本文主要介绍JavaLambda表达式的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言二、Lambda表达式概述1. 什么是Lambda表达式?三、Lambda表达式的语法规则1. 无参数的Lambda表

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Spring @RequestMapping 注解及使用技巧详解

《Spring@RequestMapping注解及使用技巧详解》@RequestMapping是SpringMVC中定义请求映射规则的核心注解,用于将HTTP请求映射到Controller处理方法... 目录一、核心作用二、关键参数说明三、快捷组合注解四、动态路径参数(@PathVariable)五、匹配请

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

python获取cmd环境变量值的实现代码

《python获取cmd环境变量值的实现代码》:本文主要介绍在Python中获取命令行(cmd)环境变量的值,可以使用标准库中的os模块,需要的朋友可以参考下... 前言全局说明在执行py过程中,总要使用到系统环境变量一、说明1.1 环境:Windows 11 家庭版 24H2 26100.4061

springboot项目中使用JOSN解析库的方法

《springboot项目中使用JOSN解析库的方法》JSON,全程是JavaScriptObjectNotation,是一种轻量级的数据交换格式,本文给大家介绍springboot项目中使用JOSN... 目录一、jsON解析简介二、Spring Boot项目中使用JSON解析1、pom.XML文件引入依

Java中的record使用详解

《Java中的record使用详解》record是Java14引入的一种新语法(在Java16中成为正式功能),用于定义不可变的数据类,这篇文章给大家介绍Java中的record相关知识,感兴趣的朋友... 目录1. 什么是 record?2. 基本语法3. record 的核心特性4. 使用场景5. 自定