异步时钟亚稳态 的解决方案——多bit信号

2024-02-01 21:18

本文主要是介绍异步时钟亚稳态 的解决方案——多bit信号,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1. 时钟偏斜 导致的采样中间值问题
  • 2. Gray码
      • 循环单bit翻转 编码方式
  • 3. 同步使能 valid
      • avalid 最小持续时间 和 最小时间间隔
  • 3. 异步FIFO


FPGA 设计之 跨时钟域(三 - 多比特小结)
FPGA 设计之 跨时钟域(四 - 格雷码)
FPGA 设计之 跨时钟域(六 - 握手)
同步valid&ready握手 与 异步valid&ack握手
《Clock Domain Crossing》 翻译与理解(5)多信号跨时钟域传输
推荐】数字芯片跨时钟域设计经典论文
多bit信号跨时钟域怎么办? – CDC的那些事(4)
菜鸟教程:4.2 Verilog 跨时钟域传输:慢到快

1. 时钟偏斜 导致的采样中间值问题

时钟偏斜:时钟沿信号到达各触发器CK端的时间不同

这会导致多bit信号的每个触发器值变化不是同时的,有的变得快有的变得慢,如果每个bit都没变完,就被异步时钟采样了,就会出现中间值。

单bit信号电平也好,脉冲也好跨时钟域,采样到了就算有点延迟也没关系。
但是多bit信号要求整个变化过程都是恒定的,中间出现了第三个值就可能对功能产生影响。

看图

在这里插入图片描述
红线处adata由000变为111,因为时钟偏斜,该信号每个bit真正开始拉高的时刻不一样。如果异步时钟bclk在不同的时刻采样会对应不同时刻的值,3条绿线分别对应采样到001、101、111。

尽管最终也会采到正确的值,但是中间值的出现会在bclk内存在一拍,思考如何消除这个。

2. Gray码

格雷码,yyds

回到问题,中间值的出现是因为采样的时候各bit变化情况不一,那我让每个时钟沿处 电平变化的触发器个数只有一个不就完事了。

反正二进制计数器是不可能只变1bit,Gray码可以,如下表

Gray码 二进制码
000 000
001 001
011 010
010 011
110 100
111 101
101 110
100 111

由此可见,Gray码的邻位只有1bit翻转,并且数值2^N与0也只有1bit翻转

实际上不一定非得按照Grey码的值来,基于此。

相邻信号只有1bit翻转,且满足"3个沿"条件 可直接 电平同步实现多bit信号的跨时钟域传输。

其实就是将多bit信号跨时钟域问题转化为单bit信号的跨时钟域问题

然后给出一个Gray码与二进制码的转换方式

assign gray = (binary >> 1) ^ binary;				//binary code to gray codeinteger i;
for(i=0;i<DATA_WIDTH;i=i+1)							//gray code to binary codebinary[i] = ^(gray >> i);

循环单bit翻转 编码方式

就是这个多bit信号的变化顺序是从最小值到最大值,然后又转回最小值或者反过来。在这种循环的变化方式下,该如何编码保证相邻状态间只有1bit翻转呢?

例如0,1,2,3,4,5,6,7,0,1,2,…这种。
但如果有中间值突然蹦到其他值,例如0,1,2,3,4,5,0,1,2,3,4,5,6,7,0,…就需要具体问题具体分析了

循环变化,值域个数为2^N时,使用 Gray码

Gray自己就是2^N的值可实现循环变化时的单bit翻转

循环变化,值域个数为偶数但不满足2^N时,使用 带扩展位的Gray码

例如6、10、12这种不满足2^N,就可以在Gray码的基础上加一位扩展位。

例如可取的值有6个,分成两半,一半是扩展位为0的递增Gray码,另一半是扩展位为1的递减Gray码

变化过程如下:

0_000 (0)  ←  1_000	(5)				//3个数是扩展位为0的递增Gray码,另外3个数是扩展位为1的递减Gray码↓		    	↑
0_001 (1)	  1_001 (4)↓		    	↑
0_011 (2)  →  1_011 (3)

再如 10

0_000  (0)  ←  1_000  (9)↓		    	 ↑
0_001  (1)	   1_001  (8)↓		    	 ↑
0_011  (2)	   1_011  (7)↓		    	 ↑
0_010  (3)	   1_010  (6)↓		    	 ↑
0_110  (4)  →  1_110  (5)

循环变化,值域个数为奇数,可 ×2转化为偶数情形

奇数个数循环的话,可 每2次奇数个数的循环看作是1次偶数个数的循环,例如

个数为5时,则每2个5转化为1个10就变成偶数情形,使用带扩展位的Gray码

第一轮和第二轮的变换过程如下,解码也不难

0_000  (第一轮0)  ←     1_000  (第二轮4)↓		    	 		 ↑
0_001  (第一轮1)	       1_001  (第二轮3)↓		    	 		 ↑
0_011  (第一轮2)	  	   1_011  (第二轮2)↓		    	 		 ↑
0_010  (第一轮3)	       1_010  (第二轮1)↓		    	 		 ↑
0_110  (第一轮4)  →    1_110  (第二轮0)

异步FIFO的读写指针就是借助的这种形式。

3. 同步使能 valid

Gray码是简单易行,这里还有另一个思路。

你这个时钟偏斜让每个bit变化时刻不统一嘛,那我等你多bit数据稳定了再采样不就完事了。

那怎么才能确定你这个多bit信号稳定了呢?

一般啊,多bit信号传输 总会配一个1bit有效标志valid,它会与多bit信号时钟对齐,并且传输时为高。

如果时间够用的话,对valid直接打三拍判个沿就可以采样了,打拍也算延迟了。

如下图所示

在这里插入图片描述

avalid拉低表示传输结束,adata没变是用于省电,常见手法

上代码

module data_sync#(DATA_WIDTH = 4)(input					rstn,input 					aclk,input [DATA_WIDTH-1:0]  adata,input 					avalid,input 					bclk,output [DATA_WIDTH-1:0] bdata,output					bvalid);reg bvalid_d1;
reg bvalid_d2;
reg bvalid_d3;
wire bvalid_pl;
reg [DATA_WIDTH-1:0] bdata_r;
reg bvalid_r;always@(posedge clk) beginif(!rstn) beginbvalid_d1 <= 1'b0;bvalid_d2 <= 1'b0;bvalid_d3 <= 1'b0;endelse beginbvalid_d1 <= avalid;bvalid_d2 <= bvalid_d1;bvalid_d3 <= bvalid_d2;end
endassign bvalid_pl = bvalid_d2 && (!bvalid_d3);			//界定bvalid的拉高和拉低always@(posedge clk) beginif(!rstn) bdata_r <= 0;else if(bvalid_pl)bdata_r <= adata;
endalways@(posedge clk) beginif(!rstn) bvalid_r <= 0;else if(bvalid_pl)bvalid_r <= 1'b1;
endassign bdata = bdata_r;
assign bvalid = bvalid_r;endmodule

为什么要做个脉冲,而不是直接在bvalid_d2为高时采样、为低时停止采样呢?
从图中可以看出,bvalid_d2的下降沿时刻对应的avalid已经为低了,即adata可能已经发生了变化。
所以bdata不能持续地驱动,即bdata <= adata;,而只能在脉冲时刻驱动一次

注意bvalid和bdata可根据实际情况调整有效时间,因为多bit信号已经捕获,因此需要持续多长时间需根据具体设计决定

从图中可以看出,bclk采样adata是基于bvalid_pl脉冲,所如果bvalid_pl为高时adata是否有可能变化为新值了?

avalid 最小持续时间 和 最小时间间隔

● 最小持续时间:其实很好计算,从bclk采样到avalid开始,经过了 3 T b c l k 3T_{bclk} 3Tbclk才将adata采样,结合之前讲到的脉冲稳定采样的"3个沿"标准,所以 avalid的最小持续时间为 1.5 T b c l k + 3 T b c l k 1.5T_{bclk}+3T_{bclk} 1.5Tbclk+3Tbclk

● 最小时间间隔:与脉冲跨时钟域问题类似,如果两次脉冲的间隔过小,会让接受时钟域认为是一次脉冲。

同理,对于多bit传输来说,每次传输bvalid拉高,那么两次bvalid为高之间的间隔也不能过小,会让bclk认为是同一次传输,只会产生一个上升沿脉冲,所以也只更新一次数据。

那么bvalid为低的最小间隔是多少呢?其实就是bclk的三个沿,也就是说只要能让bclk采样到avalid为低,就可以产生两次采样脉冲,进而采样两次了。

在这里插入图片描述

上图就表明了avalid的持续时间和间隔时间的极限情况。

可见同步使能的方法对使能持续时间和间隔时间都有限制,只要某一个限制不满足就会丢失adata,这也说明aclk的adata变化较为频繁,可采用异步FIFO解决。

实际上可采用握手的方法为avalid和adata展宽,然后使用同步使能的方法,但是握手非常耗费时间,不如直接上FIFO。

3. 异步FIFO

这个异步FIFO就行啊,一端写、一端读,读写时钟不一样。

但是异步FIFO实际上并未解决数据信号跨时钟域问题,而是把问题转化成多bit读写指针的跨时钟域问题了。

所以对于读写指针而言,需要电平同步 + Grey码的方式进行处理,同时读写逻辑也并不关注读写指针的变化过程,因此快采慢的多采样问题和慢采快的漏数问题都不会产生影响。

因此,full和empty标志并不能实时反应当前时刻FIFO的真实状态,但这种错误并不会造成满写和空读的问题。

详情见异步FIFO设计

这篇关于异步时钟亚稳态 的解决方案——多bit信号的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/668490

相关文章

C#文件复制异常:"未能找到文件"的解决方案与预防措施

《C#文件复制异常:未能找到文件的解决方案与预防措施》在C#开发中,文件操作是基础中的基础,但有时最基础的File.Copy()方法也会抛出令人困惑的异常,当targetFilePath设置为D:2... 目录一个看似简单的文件操作问题问题重现与错误分析错误代码示例错误信息根本原因分析全面解决方案1. 确保

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

SpringBoot3匹配Mybatis3的错误与解决方案

《SpringBoot3匹配Mybatis3的错误与解决方案》文章指出SpringBoot3与MyBatis3兼容性问题,因未更新MyBatis-Plus依赖至SpringBoot3专用坐标,导致类冲... 目录SpringBoot3匹配MyBATis3的错误与解决mybatis在SpringBoot3如果

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python 字符串裁切与提取全面且实用的解决方案

《Python字符串裁切与提取全面且实用的解决方案》本文梳理了Python字符串处理方法,涵盖基础切片、split/partition分割、正则匹配及结构化数据解析(如BeautifulSoup、j... 目录python 字符串裁切与提取的完整指南 基础切片方法1. 使用切片操作符[start:end]2

Linux部署中的文件大小写问题的解决方案

《Linux部署中的文件大小写问题的解决方案》在本地开发环境(Windows/macOS)一切正常,但部署到Linux服务器后出现模块加载错误,核心原因是Linux文件系统严格区分大小写,所以本文给大... 目录问题背景解决方案配置要求问题背景在本地开发环境(Windows/MACOS)一切正常,但部署到

C#异步编程ConfigureAwait的使用小结

《C#异步编程ConfigureAwait的使用小结》本文介绍了异步编程在GUI和服务器端应用的优势,详细的介绍了async和await的关键作用,通过实例解析了在UI线程正确使用await.Conf... 异步编程是并发的一种形式,它有两大好处:对于面向终端用户的GUI程序,提高了响应能力对于服务器端应

Java中InputStream重复使用问题的几种解决方案

《Java中InputStream重复使用问题的几种解决方案》在Java开发中,InputStream是用于读取字节流的类,在许多场景下,我们可能需要重复读取InputStream中的数据,这篇文章主... 目录前言1. 使用mark()和reset()方法(适用于支持标记的流)2. 将流内容缓存到字节数组

MybatisPlus中removeById删除数据库未变解决方案

《MybatisPlus中removeById删除数据库未变解决方案》MyBatisPlus中,removeById需实体类标注@TableId注解以识别数据库主键,若字段名不一致,应通过value属... 目录MyBATisPlus中removeBypythonId删除数据库未变removeById(Se