No Pain No Game HDU - 4630(gcd+线段树+离线处理)

2024-02-01 15:18

本文主要是介绍No Pain No Game HDU - 4630(gcd+线段树+离线处理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Life is a game,and you lose it,so you suicide.
But you can not kill yourself before you solve this problem:
Given you a sequence of number a 1, a 2, …, a n.They are also a permutation of 1…n.
You need to answer some queries,each with the following format:
If we chose two number a,b (shouldn’t be the same) from interval [l, r],what is the maximum gcd(a, b)? If there’s no way to choose two distinct number(l=r) then the answer is zero.
Input
First line contains a number T(T <= 5),denote the number of test cases.
Then follow T test cases.
For each test cases,the first line contains a number n(1 <= n <= 50000).
The second line contains n number a 1, a 2, …, a n.
The third line contains a number Q(1 <= Q <= 50000) denoting the number of queries.
Then Q lines follows,each lines contains two integer l, r(1 <= l <= r <= n),denote a query.
Output
For each test cases,for each query print the answer in one line.
Sample Input
1
10
8 2 4 9 5 7 10 6 1 3
5
2 10
2 4
6 9
1 4
7 10
Sample Output
5
2
2
4
3
求区间任意两个数的最大gcd。做了几个gcd的题目,貌似都是离线处理的。
对于两个数的gcd,是因为这两个数都有相同的约数x,这样这两个数的gcd才有可能是x。这样我们用O(nsqrt n)的时间复杂度处理处所有的数约数。假如a[k]的一个约数是x,x上一次出现的位置是i。那么在i~k这一段的gcd有可能就会变成x。按着这个思路去更新,线段树去求gcd最大值。询问离线处理,当现在处理的位置恰好是某一次询问的右端点的话,就可以直接通过线段树求出最大值gcd来了。
代码如下:

#include<bits/stdc++.h>
#define ll long long
using namespace std;const int maxx=5e4+100;
struct node{int l;int r;int sum;
}p[maxx<<2];
struct Node{int l;int r;int id;bool operator<(const Node &a)const{return a.r>r;}
}b[maxx];
vector<int> g[maxx];
int a[maxx],ans[maxx];
int n,m;
/*------------预处理出所有数的约数-------------*/ 
inline void init()
{for(int i=1;i<=maxx;i++)for(int j=i;j<=maxx;j+=i)g[j].push_back(i);
}
/*---------------线段树----------------*/
inline void pushup(int cur)
{p[cur].sum=max(p[cur<<1].sum,p[cur<<1|1].sum);
}
inline void build(int l,int r,int cur)
{p[cur].l=l;p[cur].r=r;p[cur].sum=0;if(l==r) return ;int mid=l+r>>1;build(l,mid,cur<<1);build(mid+1,r,cur<<1|1);
}
inline void update(int pos,int v,int cur)
{int L=p[cur].l;int R=p[cur].r;if(L==R){p[cur].sum=max(p[cur].sum,v);return ;}int mid=L+R>>1;if(pos<=mid) update(pos,v,cur<<1);else update(pos,v,cur<<1|1);pushup(cur);
}
inline int query(int l,int r,int cur)
{int L=p[cur].l;int R=p[cur].r;if(l<=L&&R<=r) return p[cur].sum;int mid=L+R>>1;if(r<=mid) return query(l,r,cur<<1);else if(l>mid) return query(l,r,cur<<1|1);else return max(query(l,mid,cur<<1),query(mid+1,r,cur<<1|1));
}
int main()
{init();int t,x;scanf("%d",&t);while(t--){map<int,int> mpp;scanf("%d",&n);for(int i=1;i<=n;i++) scanf("%d",&a[i]);scanf("%d",&m);for(int i=1;i<=m;i++) scanf("%d%d",&b[i].l,&b[i].r),b[i].id=i;sort(b+1,b+1+m);build(1,n,1);for(int i=1,j=1;i<=m&&j<=n;j++){for(int k=0;k<g[a[j]].size();k++){x=g[a[j]][k];if(mpp[x]!=0) update(mpp[x],x,1);mpp[x]=j;}for(i;i<=m&&j==b[i].r;i++) ans[b[i].id]=query(b[i].l,b[i].r,1);}for(int i=1;i<=m;i++) printf("%d\n",ans[i]);}return 0;
}

努力加油a啊,(o)/~

这篇关于No Pain No Game HDU - 4630(gcd+线段树+离线处理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/667648

相关文章

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说

Python利用PySpark和Kafka实现流处理引擎构建指南

《Python利用PySpark和Kafka实现流处理引擎构建指南》本文将深入解剖基于Python的实时处理黄金组合:Kafka(分布式消息队列)与PySpark(分布式计算引擎)的化学反应,并构建一... 目录引言:数据洪流时代的生存法则第一章 Kafka:数据世界的中央神经系统消息引擎核心设计哲学高吞吐

Go语言使用Gin处理路由参数和查询参数

《Go语言使用Gin处理路由参数和查询参数》在WebAPI开发中,处理路由参数(PathParameter)和查询参数(QueryParameter)是非常常见的需求,下面我们就来看看Go语言... 目录一、路由参数 vs 查询参数二、Gin 获取路由参数和查询参数三、示例代码四、运行与测试1. 测试编程路