pinctrl/gpio子系统(1)-pinctrl子系统介绍及驱动源码分析

2024-02-01 11:28

本文主要是介绍pinctrl/gpio子系统(1)-pinctrl子系统介绍及驱动源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.简介

在如今的驱动开发工作中,实际上已经很少去对着寄存器手册进行驱动开发了,一般板子拿到手,已经有原厂的驱动开发工程师,在gpio子系统、pinctrl子系统中将自家芯片的引脚适配好了。
我们直接基于设备树已配置好的寄存器值,去使用子系统对应的API函数,就能快速完成驱动开发,不需要再那么关心IO寄存器的值,借助这种驱动分层的思想,快速完成驱动开发。

其中配置一个GPIO最重要的几点就是配置IO的MUX复用属性,PAD电气属性,输入及输出

pinctrl 子系统作用:从设备树中获取PIN 的复用(MUX)和电气属性(PAD),并完成初始化等,PIN 可复用为 I2C、SPI、GPIO,当复用为gpio的时候,就需要用到gpio子系统
gpio 子系统作用:方便开发者使用gpio,负责初始化 GPIO 并且提供相应的 API 函数,比如设置 GPIO 为输入输出,读取 GPIO 的值

1.1 pinctrl和gpio子系统分层思想

在加入gpio子系统和pinctrl系统后,对gpio的操作,将通过pinctrl子系统设置IO复用及电气属性配置,gpio子系统控制输入/输出,读取gpio值等。当原厂bsp工程师适配好设备树后,借助子系统去完成驱动开发将变的十分简单。
image.png
其中gpio子系统和pinctrl子系统的关系如下图,相互依赖密不可分。
image.png

2.pinctrl子系统

2.1驱动源码分析

那么以MX6UL_PAD_UART1_RTS_B__GPIO1_IO19这个引脚为例子,来解析如何使用设备树+设备驱动完成引脚配置。
例如,arch/arm/boot/dts/imx6ull.dtsi中,子节点iomuxc为:

iomuxc: iomuxc@020e0000 {compatible = "fsl,imx6ul-iomuxc";reg = <0x020e0000 0x4000>;
};

而在arch/arm/boot/dts/imx6ull-alientek-emmc.dts中,对iomuxc子节点进行修改

&iomuxc {pinctrl-names = "default";pinctrl-0 = <&pinctrl_hog_1>;imx6ul-evk {pinctrl_hog_1: hoggrp-1 {fsl,pins = <MX6UL_PAD_UART1_RTS_B__GPIO1_IO19	0x17059 /* SD1 CD */MX6UL_PAD_GPIO1_IO05__USDHC1_VSELECT	0x17059 /* SD1 VSELECT */MX6UL_PAD_GPIO1_IO00__ANATOP_OTG1_ID    0x13058 /* USB_OTG1_ID */>;};

其中MX6UL_PAD_UART1_RTS_B__GPIO1_IO19宏定义的具体含义,可以参考下下面的pinctrl配置信息,先不放这个章节

其中的compatible属性为fsl,imx6ul-iomuxc,那么Linux内核就会根据这个字段,查找相应的驱动文件。
全局搜索后找到drivers/pinctrl/freescale/pinctrl-imx6ul.c中的OF表有匹配的属性

static struct of_device_id imx6ul_pinctrl_of_match[] = {{ .compatible = "fsl,imx6ul-iomuxc", .data = &imx6ul_pinctrl_info, },{ .compatible = "fsl,imx6ull-iomuxc-snvs", .data = &imx6ull_snvs_pinctrl_info, },{ /* sentinel */ }
};

当设备和驱动匹配的时候,就会调用对应的probe成员函数,在其中完成PIN配置
image.png
随后调用pinctrl_register向Linux内核注册一个PIN控制器

imx_pinctrl_desc->name = dev_name(&pdev->dev);
imx_pinctrl_desc->pins = info->pins;
imx_pinctrl_desc->npins = info->npins;
imx_pinctrl_desc->pctlops = &imx_pctrl_ops;
imx_pinctrl_desc->pmxops = &imx_pmx_ops;
imx_pinctrl_desc->confops = &imx_pinconf_ops;
imx_pinctrl_desc->owner = THIS_MODULE;ret = imx_pinctrl_probe_dt(pdev, info);
if (ret) {dev_err(&pdev->dev, "fail to probe dt properties\n");return ret;
}ipctl->info = info;
ipctl->dev = info->dev;
platform_set_drvdata(pdev, ipctl);
ipctl->pctl = pinctrl_register(imx_pinctrl_desc, &pdev->dev, ipctl);
if (!ipctl->pctl) {dev_err(&pdev->dev, "could not register IMX pinctrl driver\n");return -EINVAL;
}

在其中的pctlops,pmxops,confops都是PIN的配置函数,借助这些函数来完成PIN 配置,其他的就留着之后再分析啦~

2.2pinctrl配置信息

宏定义MX6UL_PAD_UART1_RTS_B__GPIO1_IO19为:

#define MX6UL_PAD_UART1_RTS_B__GPIO1_IO19          0x0090 0x031C 0x0000 0x5 0x0

分别对应的值为:<mux_reg conf_reg input_reg mux_mode input_val>

则代表:
mux_reg:IO复用寄存器地址(MUX类) = 0x0090
conf_reg:io配置寄存器地址(PAD类)= 0x031C
input_reg:输入寄存器地址 = 0x0000
mux_mode:mux_reg寄存器值 = 0x5
input_val:input_reg值 = 0x0
0x17059:conf_reg寄存器值

如上面iomuxc节点的reg地址为0x020e0000,则代表MX6UL_PAD_UART1_RTS_B__GPIO1_IO19的复用寄存器地址为0x020e0000+0x0090=0x020e0090
image.png
mux_mode = 0x5 则代表io复用为GPIO1_IO19
image.png
conf_reg = 0x020e031C,寄存器地址为0x020e031C,值为0x17059

2.3添加pinctrl节点过程

多说不如多做,实战添加外设的pin信息。
iomuxc下imx6ul-evk节点添加pinctrl test子节点

pinctrl_test : testgrp {fsl,pins = <MX6UL_PAD_GPIO1_IO00__GPIO1_IO00 config //待结合gpio子系统来添加具体值,这里先不写>;
};

这样就完成了一个gpio的pinctrl子系统配置。这里因为复用为gpio,所以需要用到gpio子系统,gpio子系统中再继续完成这个实战~

3.最后

哈喽~我是徐章鑫,沪漂嵌入式开发工程师一枚,立志成为嵌入式全栈开发工程师,成为优秀博客创作者,共同学习进步。
以上代码全部放在我私人的github地址,其中有许多自己辛苦敲的例程源码,供大家参考、批评指正,有兴趣还可以直接提patch修改我的仓库~:
https://github.com/Xuzhangxin
觉得不错的话可以点个收藏和star~

这篇关于pinctrl/gpio子系统(1)-pinctrl子系统介绍及驱动源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/667136

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与