[C++历练之路]C++多态底层逻辑知多少

2024-02-01 10:20

本文主要是介绍[C++历练之路]C++多态底层逻辑知多少,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

W...Y的主页 😊 

代码仓库分享💕


前言🍔:学习了继承与多态,我相信大家对其底层的运用逻辑非常之好奇,今天我们就来探索一下多态中的底层逻辑,话不多说,我们现在开始!

目录

抽象类

概念

 接口继承和实现继承

多态的原理

虚函数表 

多态的原理 

 单继承和多继承关系的虚函数表

单继承中的虚函数表

 多继承中的虚函数表

菱形继承、菱形虚拟继承

虚函数表地址


抽象类

概念

在虚函数的后面写上 =0 ,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫接口
类),抽象类不能实例化出对象
。派生类继承后也不能实例化出对象,只有重写纯虚函数,派生
类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承。

class Car
{
public:
virtual void Drive() = 0;
};
class Benz :public Car
{
public:
virtual void Drive()
{
cout << "Benz-舒适" << endl;
}
};
class BMW :public Car
{
public:
virtual void Drive()
{
cout << "BMW-操控" << endl;
}
};
void Test()
{
Car* pBenz = new Benz;
pBenz->Drive();
Car* pBMW = new BMW;
pBMW->Drive();
}

 接口继承和实现继承

普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实
现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成
多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。

多态的原理

虚函数表 

我们先来看一段程序:

#include<iostream>
using namespace std;
class Base
{
public:virtual void Func1(){cout << "Func1()" << endl;}
private:int _b = 1;
};
int main()
{cout << sizeof(Base) << endl;return 0;
}

 这里的sizeof(Base)的大小应该为多少?

很多人会认为这里应该为4,但是结果总是那么不尽人意:

在x86状态下为8,在x64状态下为16,这是为什么呢?

通过观察测试我们发现b对象是8bytes,除了_b成员,还多一个__vfptr放在对象的前面(注意有些
平台可能会放到对象的最后面,这个跟平台有关),对象中的这个指针我们叫做虚函数表指针(v代
表virtual,f代表function)

一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数的地址要被放到虚函数表中,虚函数表也简称虚表,。那么派生类中这个表放了些什么呢?我们接着往下分析:

class Base
{
public:virtual void Func1(){cout << "Base::Func1()" << endl;}virtual void Func2(){cout << "Base::Func2()" << endl;}void Func3(){cout << "Base::Func3()" << endl;}
private:int _b = 1;
};
class Derive : public Base
{
public:virtual void Func1(){cout << "Derive::Func1()" << endl;}
private:int _d = 2;
};
int main()
{Base b;Derive d;return 0;
}

现在构建了两个类,一个父类一个子类,子类中重写了父类的Func1()函数,父类中有两个虚函数一个函数,我们先通过调试看看有什么:

通过观察和测试,我们发现了以下几点问题:
1. 派生类对象d中也有一个虚表指针,d对象由两部分构成,一部分是父类继承下来的成员,虚
表指针也就是存在部分的另一部分是自己的成员。
2. 基类b对象和派生类d对象虚表是不一样的,这里我们发现Func1完成了重写,所以d的虚表
中存的是重写的Derive::Func1,所以虚函数的重写也叫作覆盖,覆盖就是指虚表中虚函数
的覆盖。重写是语法的叫法,覆盖是原理层的叫法。
3. 另外Func2继承下来后是虚函数,所以放进了虚表,Func3也继承下来了,但是不是虚函
数,所以不会放进虚表。
4. 虚函数表本质是一个存虚函数指针的指针数组,一般情况这个数组最后面放了一个nullptr。
5. 总结一下派生类的虚表生成:a.先将基类中的虚表内容拷贝一份到派生类虚表中 b.如果派生
类重写了基类中某个虚函数,用派生类自己的虚函数覆盖虚表中基类的虚函数 c.派生类自己
新增加的虚函数按其在派生类中的声明次序增加到派生类虚表的最后。
6. 这里还有一个很容易混淆的问题:虚函数存在哪的?虚表存在哪的? 答:虚函数存在
虚表,虚表存在对象中。注意上面的回答的错的。但是很多人都是这样深以为然的。注意
虚表存的是虚函数指针,不是虚函数,虚函数和普通函数一样的,都是存在代码段的,只是
他的指针又存到了虚表中。另外对象中存的不是虚表,存的是虚表指针。

多态的原理 

void f(Base* v)
{v->Func1();
}

 所以我们就可以理解使用父类指针,多态可以通过父类指针的指向,指向父类调用父类,指向子类调用子类的重写一样,就是因为父类与子类中的虚函数表指向的内容不同。

1. 观察下图的红色箭头我们看到,p是指向mike对象时,p->BuyTicket在mike的虚表中找到虚
函数是Person::BuyTicket。
2. 观察下图的蓝色箭头我们看到,p是指向johnson对象时,p->BuyTicket在johson的虚表中
找到虚函数是Student::BuyTicket。
3. 这样就实现出了不同对象去完成同一行为时,展现出不同的形态。
4. 反过来思考我们要达到多态,有两个条件,一个是虚函数覆盖,一个是对象的指针或引用调
用虚函数。
5. 再通过下面的汇编代码分析,看出满足多态以后的函数调用,不是在编译时确定的,是运行
起来以后到对象的中取找的。不满足多态的函数调用时编译时确认好的。

// 以下汇编代码中跟你这个问题不相关的都被去掉了
void Func(Person* p)
{
...
p->BuyTicket();
// p中存的是mike对象的指针,将p移动到eax中
001940DE  mov     eax,dword ptr [p]
// [eax]就是取eax值指向的内容,这里相当于把mike对象头4个字节(虚表指针)移动到了edx
001940E1  mov     edx,dword ptr [eax]
// [edx]就是取edx值指向的内容,这里相当于把虚表中的头4字节存的虚函数指针移动到了eax
00B823EE  mov     eax,dword ptr [edx]
// call eax中存虚函数的指针。这里可以看出满足多态的调用,不是在编译时确定的,是运行起来
以后到对象的中取找的。
001940EA  call     eax 
00头1940EC  cmp     esi,esp 
}
int main()
{
...
// 首先BuyTicket虽然是虚函数,但是mike是对象,不满足多态的条件,所以这里是普通函数的调
//用转换成地址时,是在编译时已经从符号表确认了函数的地址,直接call 地址
mike.BuyTicket();
00195182  lea     ecx,[mike]
00195185  call     Person::BuyTicket (01914F6h) 
...
}

前面mov很多就是为了寻找头四个字节中的虚函数指针,然后将指针迁移到eax中去,然后call进行调用。多态调用是在运行时去虚函数表中找函数的地址进行调用,所以可以做到指向父类调用父类的虚函数,指向子类调用子类的虚函数。而普通调用的时候就要在编译时确定其函数的地址。

 单继承和多继承关系的虚函数表

单继承中的虚函数表

class Base {
public:virtual void func1() { cout << "Base::func1" << endl; }virtual void func2() { cout << "Base::func2" << endl; }
private:int a;
};
class Derive :public Base {
public:virtual void func1() { cout << "Derive::func1" << endl; }virtual void func3() { cout << "Derive::func3" << endl; }virtual void func4() { cout << "Derive::func4" << endl; }
private:int b;
};
int main()
{Base b;Derive d;return 0;
}

观察下图中的监视窗口中我们发现看不见func3和func4。这里是编译器的监视窗口故意隐藏了这
两个函数,也可以认为是他的一个小bug。那么我们如何查看d的虚表呢?下面我们使用代码打印
出虚表中的函数

class Base {
public:virtual void func1() { cout << "Base::func1" << endl; }virtual void func2() { cout << "Base::func2" << endl; }
private:int a;
};
class Derive :public Base {
public:virtual void func1() { cout << "Derive::func1" << endl; }virtual void func3() { cout << "Derive::func3" << endl; }virtual void func4() { cout << "Derive::func4" << endl; }
private:int b;
};
typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{// 依次取虚表中的虚函数指针打印并调用。调用就可以看出存的是哪个函数cout << " 虚表地址>" << vTable << endl;for (int i = 0; vTable[i] != nullptr; ++i){printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);VFPTR f = vTable[i];f();}cout << endl;
}
int main()
{Base b;Derive d;PrintVTable((VFPTR*)(*(int*)(&d)));return 0;
}

思路:取出b、d对象的头4bytes,就是虚表的指针,前面我们说了虚函数表本质是一个存虚函数
指针的指针数组,这个数组最后面放了一个nullptr
1.先取b的地址,强转成一个int*的指针
2.再解引用取值,就取到了b对象头4bytes的值,这个值就是指向虚表的指针
3.再强转成VFPTR*,因为虚表就是一个存VFPTR类型(虚函数指针类型)的数组。
4.虚表指针传递给PrintVTable进行打印虚表
5.需要说明的是这个打印虚表的代码经常会崩溃,因为编译器有时对虚表的处理不干净,虚表最
后面没有放nullptr,导致越界,这是编译器的问题。我们只需要点目录栏的-生成-清理解决方案,再编译就好了。

 多继承中的虚函数表

typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{cout << " 虚表地址>" << vTable << endl;for (int i = 0; vTable[i] != nullptr; ++i){printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);VFPTR f = vTable[i];f();}cout << endl;
}
class Base1 {
public:virtual void func1() { cout << "Base1::func1" << endl; }virtual void func2() { cout << "Base1::func2" << endl; }
private:int b1;
};
class Base2 {
public:virtual void func1() { cout << "Base2::func1" << endl; }virtual void func2() { cout << "Base2::func2" << endl; }
private:int b2;
};
class Derive : public Base1, public Base2 {
public:virtual void func1() { cout << "Derive::func1" << endl; }virtual void func3() { cout << "Derive::func3" << endl; }
private:int d1;
};
typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{cout << " 虚表地址>" << vTable << endl;for (int i = 0; vTable[i] != nullptr; ++i){printf(" 第%d个虚函数地址 :0X%x,->", i, vTable[i]);VFPTR f = vTable[i];f();}cout << endl;
}
int main()
{Derive d;VFPTR* vTableb1 = (VFPTR*)(*(int*)&d);PrintVTable(vTableb1);VFPTR* vTableb2 = (VFPTR*)(*(int*)((char*)&d + sizeof(Base1)));PrintVTable(vTableb2);return 0;
}

观察下图可以看出:多继承派生类的未重写的虚函数放在第一个继承基类部分的虚函数表中

菱形继承、菱形虚拟继承

实际中我们不建议设计出菱形继承及菱形虚拟继承,一方面太复杂容易出问题,另一方面这样的
模型,访问基类成员有一定得性能损耗。所以菱形继承、菱形虚拟继承我们的虚表我们就不看
了,一般我们也不需要研究清楚,因为实际中很少用。如果好奇心比较强的宝宝,可以去看下面
的两篇链接文章。

1. C++ 虚函数表解析
2. C++ 对象的内存布局

虚函数表地址

虚函数表一般是存在哪的呢?是栈、堆、常量区、静态区呢?我们可以通过一段代码看一下:

int main()
{int i = 0;static double j = 1.0;int* p1 = new int;const char* p2 = "xxxxx";printf("栈:%p\n", &i);printf("静态区:%p\n", &j);printf("堆:%p\n", p1);printf("常量区:%p\n", p2);Base b;Derive d;Base* p3 = &b;Derive* p4 = &d;printf("Base虚表地址:%p\n", *(int*)p3);printf("Base虚表地址:%p\n", *(int*)p4);return 0;}

我们可以通过虚函数表的地址与各个区域某个值的地址比较,哪个离得近就是哪里的地址。

 我们可以看出,虚表的地址应该存在常量区。

以上就是本次全部内容,感谢大家观看!! 

这篇关于[C++历练之路]C++多态底层逻辑知多少的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666961

相关文章

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

MySQL逻辑删除与唯一索引冲突解决方案

《MySQL逻辑删除与唯一索引冲突解决方案》本文探讨MySQL逻辑删除与唯一索引冲突问题,提出四种解决方案:复合索引+时间戳、修改唯一字段、历史表、业务层校验,推荐方案1和方案3,适用于不同场景,感兴... 目录问题背景问题复现解决方案解决方案1.复合唯一索引 + 时间戳删除字段解决方案2:删除后修改唯一字

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

C++中NULL与nullptr的区别小结

《C++中NULL与nullptr的区别小结》本文介绍了C++编程中NULL与nullptr的区别,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编... 目录C++98空值——NULLC++11空值——nullptr区别对比示例 C++98空值——NUL

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window