GAT学习:PyG实现GAT(自定义GAT层)网络(四)

2024-02-01 08:18

本文主要是介绍GAT学习:PyG实现GAT(自定义GAT层)网络(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyG实现自定义GAT层

  • 完整代码

本系列中的第三篇介绍了如何调用pyg封装好的GAT函数,当然同样的,我们需要学会如何自定义网络层以满足研究需求。

完整代码

import torch
import math
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops,remove_self_loops,softmax
from torch_geometric.datasets import Planetoid
import ssl
import torch.nn.functional as Fclass GATConv(MessagePassing):def __init__(self, in_channels,out_channels, heads: int = 1, concat: bool = True,negative_slope: float = 0.2, dropout: float = 0.,add_self_loops: bool = True, bias: bool = True, **kwargs):kwargs.setdefault('aggr', 'add')super(GATConv, self).__init__(node_dim=0, **kwargs)#in_channel&out channel就是我们的输入输出数self.in_channels = in_channelsself.out_channels = out_channels#head即设置几个attention头self.heads = heads#concat用于设置是否拼接attention的输出self.concat = concat#negative_slope设置leaklyRelu的参数self.negative_slope = negative_slopeself.dropout = dropout#add_self_loops设置是否添加自环self.add_self_loops = add_self_loops#这里将特征映射到每个attention头所需要的特征数,从而满足每个attention头的输入self.lin = Linear(in_channels, heads * out_channels, bias=False)self.att = Parameter(torch.Tensor(1, heads, out_channels))if bias and concat:self.bias = torch.nn.Parameter(torch.Tensor(heads * out_channels))elif bias and not concat:self.bias = torch.nn.Parameter(torch.Tensor(out_channels))else:self.register_parameter('bias', None)self._alpha = None#用于重置参数self.reset_parameters()def reset_parameters(self):glorot(self.lin.weight)glorot(self.att)zeros(self.bias)def forward(self, x, edge_index, return_attention_weights=None):H, C = self.heads, self.out_channelsx = self.lin(x).view(-1, H, C)#这里alpha的规模为[node_num,heads]alpha = (x * self.att).sum(dim=-1)if self.add_self_loops:num_nodes = x.size(0)num_nodes = x.size(0) if x is not None else num_nodesedge_index, _ = remove_self_loops(edge_index)edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)# propagate_type: (x: OptPairTensor, alpha: OptPairTensor)out = self.propagate(edge_index, x=x,alpha=alpha)alpha = self._alphaself._alpha = Noneif self.concat:out = out.view(-1, self.heads * self.out_channels)else:out = out.mean(dim=1)if self.bias is not None:out += self.biasif isinstance(return_attention_weights, bool):return out, (edge_index, alpha)else:return outdef message(self, x_j, alpha_j, index):alpha = alpha_j#alpha_j[edge_num,heads]alpha = F.leaky_relu(alpha, self.negative_slope)alpha = softmax(alpha, index)self._alpha = alphaalpha = F.dropout(alpha, p=self.dropout, training=self.training)return x_j * alpha.unsqueeze(-1)class Net(torch.nn.Module):def __init__(self):super(Net,self).__init__()self.gat1=GATConv(dataset.num_node_features,8,8,dropout=0.6)self.gat2=GATConv(64,7,1,dropout=0.6)def forward(self,data):x,edge_index=data.x, data.edge_indexx=self.gat1(x,edge_index)x=self.gat2(x,edge_index)return F.log_softmax(x,dim=1)dataset = Planetoid(root='Cora', name='Cora')
x=dataset[0].x
edge_index=dataset[0].edge_indexdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
data = dataset[0].to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)model.train()
for epoch in range(100):optimizer.zero_grad()out = model(data)loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct/int(data.test_mask.sum())
print('Accuracy:{:.4f}'.format(acc))
>>>Accuracy:0.7930

这篇关于GAT学习:PyG实现GAT(自定义GAT层)网络(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/666654

相关文章

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

Go语言并发之通知退出机制的实现

《Go语言并发之通知退出机制的实现》本文主要介绍了Go语言并发之通知退出机制的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、通知退出机制1.1 进程/main函数退出1.2 通过channel退出1.3 通过cont

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

如何在Java Spring实现异步执行(详细篇)

《如何在JavaSpring实现异步执行(详细篇)》Spring框架通过@Async、Executor等实现异步执行,提升系统性能与响应速度,支持自定义线程池管理并发,本文给大家介绍如何在Sprin... 目录前言1. 使用 @Async 实现异步执行1.1 启用异步执行支持1.2 创建异步方法1.3 调用

Spring Boot配置和使用两个数据源的实现步骤

《SpringBoot配置和使用两个数据源的实现步骤》本文详解SpringBoot配置双数据源方法,包含配置文件设置、Bean创建、事务管理器配置及@Qualifier注解使用,强调主数据源标记、代... 目录Spring Boot配置和使用两个数据源技术背景实现步骤1. 配置数据源信息2. 创建数据源Be

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

linux批量替换文件内容的实现方式

《linux批量替换文件内容的实现方式》本文总结了Linux中批量替换文件内容的几种方法,包括使用sed替换文件夹内所有文件、单个文件内容及逐行字符串,强调使用反引号和绝对路径,并分享个人经验供参考... 目录一、linux批量替换文件内容 二、替换文件内所有匹配的字符串 三、替换每一行中全部str1为st

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor