GAT学习:PyG实现GAT(自定义GAT层)网络(四)

2024-02-01 08:18

本文主要是介绍GAT学习:PyG实现GAT(自定义GAT层)网络(四),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyG实现自定义GAT层

  • 完整代码

本系列中的第三篇介绍了如何调用pyg封装好的GAT函数,当然同样的,我们需要学会如何自定义网络层以满足研究需求。

完整代码

import torch
import math
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops,remove_self_loops,softmax
from torch_geometric.datasets import Planetoid
import ssl
import torch.nn.functional as Fclass GATConv(MessagePassing):def __init__(self, in_channels,out_channels, heads: int = 1, concat: bool = True,negative_slope: float = 0.2, dropout: float = 0.,add_self_loops: bool = True, bias: bool = True, **kwargs):kwargs.setdefault('aggr', 'add')super(GATConv, self).__init__(node_dim=0, **kwargs)#in_channel&out channel就是我们的输入输出数self.in_channels = in_channelsself.out_channels = out_channels#head即设置几个attention头self.heads = heads#concat用于设置是否拼接attention的输出self.concat = concat#negative_slope设置leaklyRelu的参数self.negative_slope = negative_slopeself.dropout = dropout#add_self_loops设置是否添加自环self.add_self_loops = add_self_loops#这里将特征映射到每个attention头所需要的特征数,从而满足每个attention头的输入self.lin = Linear(in_channels, heads * out_channels, bias=False)self.att = Parameter(torch.Tensor(1, heads, out_channels))if bias and concat:self.bias = torch.nn.Parameter(torch.Tensor(heads * out_channels))elif bias and not concat:self.bias = torch.nn.Parameter(torch.Tensor(out_channels))else:self.register_parameter('bias', None)self._alpha = None#用于重置参数self.reset_parameters()def reset_parameters(self):glorot(self.lin.weight)glorot(self.att)zeros(self.bias)def forward(self, x, edge_index, return_attention_weights=None):H, C = self.heads, self.out_channelsx = self.lin(x).view(-1, H, C)#这里alpha的规模为[node_num,heads]alpha = (x * self.att).sum(dim=-1)if self.add_self_loops:num_nodes = x.size(0)num_nodes = x.size(0) if x is not None else num_nodesedge_index, _ = remove_self_loops(edge_index)edge_index, _ = add_self_loops(edge_index, num_nodes=num_nodes)# propagate_type: (x: OptPairTensor, alpha: OptPairTensor)out = self.propagate(edge_index, x=x,alpha=alpha)alpha = self._alphaself._alpha = Noneif self.concat:out = out.view(-1, self.heads * self.out_channels)else:out = out.mean(dim=1)if self.bias is not None:out += self.biasif isinstance(return_attention_weights, bool):return out, (edge_index, alpha)else:return outdef message(self, x_j, alpha_j, index):alpha = alpha_j#alpha_j[edge_num,heads]alpha = F.leaky_relu(alpha, self.negative_slope)alpha = softmax(alpha, index)self._alpha = alphaalpha = F.dropout(alpha, p=self.dropout, training=self.training)return x_j * alpha.unsqueeze(-1)class Net(torch.nn.Module):def __init__(self):super(Net,self).__init__()self.gat1=GATConv(dataset.num_node_features,8,8,dropout=0.6)self.gat2=GATConv(64,7,1,dropout=0.6)def forward(self,data):x,edge_index=data.x, data.edge_indexx=self.gat1(x,edge_index)x=self.gat2(x,edge_index)return F.log_softmax(x,dim=1)dataset = Planetoid(root='Cora', name='Cora')
x=dataset[0].x
edge_index=dataset[0].edge_indexdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
data = dataset[0].to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)model.train()
for epoch in range(100):optimizer.zero_grad()out = model(data)loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct/int(data.test_mask.sum())
print('Accuracy:{:.4f}'.format(acc))
>>>Accuracy:0.7930

这篇关于GAT学习:PyG实现GAT(自定义GAT层)网络(四)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666654

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU