GAT学习:PyG实现multi-head GAT(二)

2024-02-01 08:18
文章标签 实现 学习 head multi pyg gat

本文主要是介绍GAT学习:PyG实现multi-head GAT(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyG实现GAT网络

  • 预备知识
  • 代码分析
    • GAT

接上篇学习笔记GAT学习:PyG实现GAT(图注意力神经网络)网络(一)为了使得Attention的效果更好,所以加入multi-head attention。画个图说明multi-head attention的工作原理。
在这里插入图片描述
其实就相当于并联了head_num个attention后,将每个attention层的输出特征拼接起来,然后再输入一个attenion层得到输出结果。

预备知识

关于GAT的原理等知识,参考我的上篇博客:PyG实现GAT(图注意力神经网络)网络(一)

代码分析

import torch
import math
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops,degree
from torch_geometric.datasets import Planetoid
import ssl
import torch.nn.functional as Fclass GAL(MessagePassing):def __init__(self,in_features,out_featrues):super(GAL,self).__init__(aggr='add')self.a = torch.nn.Parameter(torch.zeros(size=(2*out_featrues, 1)))torch.nn.init.xavier_uniform_(self.a.data, gain=1.414)  # 初始化# 定义leakyrelu激活函数self.leakyrelu = torch.nn.LeakyReLU()self.linear=torch.nn.Linear(in_features,out_featrues)def forward(self,x,edge_index):x=self.linear(x)N=x.size()[0]row,col=edge_indexa_input = torch.cat([x[row], x[col]], dim=1)# [N, N, 1] => [N, N] 图注意力的相关系数(未归一化)temp=torch.mm(a_input,self.a).squeeze()e = self.leakyrelu(temp)#e_all为同一个节点与其全部邻居的计算的分数的和,用于计算归一化softmaxe_all=torch.zeros(x.size()[0])count = 0for i in col:e_all[i]+=e[count]count=count+1for i in range(len(e)):e[i]=math.exp(e[i])/math.exp(e_all[col[i]])return self.propagate(edge_index,x=x,norm=e)def message(self, x_j, norm):return norm.view(-1, 1) * x_jclass GAT(torch.nn.Module):def __init__(self, in_features, hid_features, out_features, n_heads):"""n_heads 表示有几个GAL层,最后进行拼接在一起,类似self-attention从不同的子空间进行抽取特征。"""super(GAT, self).__init__()# 定义multi-head的图注意力层self.attentions = [GAL(in_features, hid_features) for _ inrange(n_heads)]# 输出层,也通过图注意力层来实现,可实现分类、预测等功能self.out_att = GAL(hid_features * n_heads, out_features)def forward(self, x, edge_index):# 将每个head得到的x特征进行拼接x = torch.cat([att(x, edge_index) for att in self.attentions], dim=1)print('x.size after cat',x.size())x = F.elu(self.out_att(x,edge_index))  # 输出并激活print('x.size after elu',x.size())return F.log_softmax(x, dim=1)  # log_softmax速度变快,保持数值稳定class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.gat = GAT(dataset.num_node_features,16,7,4)def forward(self, data):x, edge_index = data.x, data.edge_indexx = F.dropout(x, training=self.training)x = self.gat(x, edge_index)print('X_GAT',x.size())return F.log_softmax(x, dim=1)ssl._create_default_https_context = ssl._create_unverified_context
dataset = Planetoid(root='Cora', name='Cora')
x=dataset[0].x
edge_index=dataset[0].edge_index
model=Net()
data=dataset[0]
out=Net()(data)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
for epoch in range(2):optimizer.zero_grad()out = model(data)loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()
model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct/int(data.test_mask.sum())
print('Accuracy:{:.4f}'.format(acc))
>>>Accuracy:0.1930

GAT

class GAT(torch.nn.Module):def __init__(self, in_features, hid_features, out_features, n_heads):"""n_heads 表示有几个GAL层,最后进行拼接在一起,类似self-attention从不同的子空间进行抽取特征。"""super(GAT, self).__init__()# 定义multi-head的图注意力层self.attentions = [GAL(in_features, hid_features) for _ inrange(n_heads)]# 输出层,也通过图注意力层来实现,可实现分类、预测等功能self.out_att = GAL(hid_features * n_heads, out_features)def forward(self, x, edge_index):# 将每个head得到的x特征进行拼接x = torch.cat([att(x, edge_index) for att in self.attentions], dim=1)print('x.size after cat',x.size())x = F.elu(self.out_att(x,edge_index))  # 输出并激活print('x.size after elu',x.size())return F.log_softmax(x, dim=1)  # log_softmax速度变快,保持数值稳定
>>>x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])

这篇关于GAT学习:PyG实现multi-head GAT(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666653

相关文章

Spring Boot整合Redis注解实现增删改查功能(Redis注解使用)

《SpringBoot整合Redis注解实现增删改查功能(Redis注解使用)》文章介绍了如何使用SpringBoot整合Redis注解实现增删改查功能,包括配置、实体类、Repository、Se... 目录配置Redis连接定义实体类创建Repository接口增删改查操作示例插入数据查询数据删除数据更

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

linux ssh如何实现增加访问端口

《linuxssh如何实现增加访问端口》Linux中SSH默认使用22端口,为了增强安全性或满足特定需求,可以通过修改SSH配置来增加或更改SSH访问端口,具体步骤包括修改SSH配置文件、增加或修改... 目录1. 修改 SSH 配置文件2. 增加或修改端口3. 保存并退出编辑器4. 更新防火墙规则使用uf

Java 的ArrayList集合底层实现与最佳实践

《Java的ArrayList集合底层实现与最佳实践》本文主要介绍了Java的ArrayList集合类的核心概念、底层实现、关键成员变量、初始化机制、容量演变、扩容机制、性能分析、核心方法源码解析、... 目录1. 核心概念与底层实现1.1 ArrayList 的本质1.1.1 底层数据结构JDK 1.7

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符