GAT学习:PyG实现multi-head GAT(二)

2024-02-01 08:18
文章标签 实现 学习 head multi pyg gat

本文主要是介绍GAT学习:PyG实现multi-head GAT(二),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PyG实现GAT网络

  • 预备知识
  • 代码分析
    • GAT

接上篇学习笔记GAT学习:PyG实现GAT(图注意力神经网络)网络(一)为了使得Attention的效果更好,所以加入multi-head attention。画个图说明multi-head attention的工作原理。
在这里插入图片描述
其实就相当于并联了head_num个attention后,将每个attention层的输出特征拼接起来,然后再输入一个attenion层得到输出结果。

预备知识

关于GAT的原理等知识,参考我的上篇博客:PyG实现GAT(图注意力神经网络)网络(一)

代码分析

import torch
import math
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops,degree
from torch_geometric.datasets import Planetoid
import ssl
import torch.nn.functional as Fclass GAL(MessagePassing):def __init__(self,in_features,out_featrues):super(GAL,self).__init__(aggr='add')self.a = torch.nn.Parameter(torch.zeros(size=(2*out_featrues, 1)))torch.nn.init.xavier_uniform_(self.a.data, gain=1.414)  # 初始化# 定义leakyrelu激活函数self.leakyrelu = torch.nn.LeakyReLU()self.linear=torch.nn.Linear(in_features,out_featrues)def forward(self,x,edge_index):x=self.linear(x)N=x.size()[0]row,col=edge_indexa_input = torch.cat([x[row], x[col]], dim=1)# [N, N, 1] => [N, N] 图注意力的相关系数(未归一化)temp=torch.mm(a_input,self.a).squeeze()e = self.leakyrelu(temp)#e_all为同一个节点与其全部邻居的计算的分数的和,用于计算归一化softmaxe_all=torch.zeros(x.size()[0])count = 0for i in col:e_all[i]+=e[count]count=count+1for i in range(len(e)):e[i]=math.exp(e[i])/math.exp(e_all[col[i]])return self.propagate(edge_index,x=x,norm=e)def message(self, x_j, norm):return norm.view(-1, 1) * x_jclass GAT(torch.nn.Module):def __init__(self, in_features, hid_features, out_features, n_heads):"""n_heads 表示有几个GAL层,最后进行拼接在一起,类似self-attention从不同的子空间进行抽取特征。"""super(GAT, self).__init__()# 定义multi-head的图注意力层self.attentions = [GAL(in_features, hid_features) for _ inrange(n_heads)]# 输出层,也通过图注意力层来实现,可实现分类、预测等功能self.out_att = GAL(hid_features * n_heads, out_features)def forward(self, x, edge_index):# 将每个head得到的x特征进行拼接x = torch.cat([att(x, edge_index) for att in self.attentions], dim=1)print('x.size after cat',x.size())x = F.elu(self.out_att(x,edge_index))  # 输出并激活print('x.size after elu',x.size())return F.log_softmax(x, dim=1)  # log_softmax速度变快,保持数值稳定class Net(torch.nn.Module):def __init__(self):super(Net, self).__init__()self.gat = GAT(dataset.num_node_features,16,7,4)def forward(self, data):x, edge_index = data.x, data.edge_indexx = F.dropout(x, training=self.training)x = self.gat(x, edge_index)print('X_GAT',x.size())return F.log_softmax(x, dim=1)ssl._create_default_https_context = ssl._create_unverified_context
dataset = Planetoid(root='Cora', name='Cora')
x=dataset[0].x
edge_index=dataset[0].edge_index
model=Net()
data=dataset[0]
out=Net()(data)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
model.train()
for epoch in range(2):optimizer.zero_grad()out = model(data)loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])loss.backward()optimizer.step()
model.eval()
_, pred = model(data).max(dim=1)
correct = int(pred[data.test_mask].eq(data.y[data.test_mask]).sum().item())
acc = correct/int(data.test_mask.sum())
print('Accuracy:{:.4f}'.format(acc))
>>>Accuracy:0.1930

GAT

class GAT(torch.nn.Module):def __init__(self, in_features, hid_features, out_features, n_heads):"""n_heads 表示有几个GAL层,最后进行拼接在一起,类似self-attention从不同的子空间进行抽取特征。"""super(GAT, self).__init__()# 定义multi-head的图注意力层self.attentions = [GAL(in_features, hid_features) for _ inrange(n_heads)]# 输出层,也通过图注意力层来实现,可实现分类、预测等功能self.out_att = GAL(hid_features * n_heads, out_features)def forward(self, x, edge_index):# 将每个head得到的x特征进行拼接x = torch.cat([att(x, edge_index) for att in self.attentions], dim=1)print('x.size after cat',x.size())x = F.elu(self.out_att(x,edge_index))  # 输出并激活print('x.size after elu',x.size())return F.log_softmax(x, dim=1)  # log_softmax速度变快,保持数值稳定
>>>x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])
x.size after cat torch.Size([2708, 64])
x.size after elu torch.Size([2708, 7])

这篇关于GAT学习:PyG实现multi-head GAT(二)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666653

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J