动态规划3:最大子段和问题到最大子矩阵问题(三):初探最大子矩阵之和问题

2024-02-01 05:48

本文主要是介绍动态规划3:最大子段和问题到最大子矩阵问题(三):初探最大子矩阵之和问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题描述:

给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。
例子:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩阵为:

9 2
-4 1
-1 8
其元素总和为15。

假设最大子矩阵的结果为从第r行到k行、从第i列到j列的子矩阵,如下所示(ari表示a[r][i],假设数组下标从1开始):
  | a11 …… a1i ……a1j ……a1n |
  | a21 …… a2i ……a2j ……a2n |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ar1 …… ari ……arj ……arn |
  |  .     .     .    .    .     .    .   |
  |  .     .     .    .    .     .    .   |
  | ak1 …… aki ……akj ……akn |
  |  .     .     .    .    .     .    .   |
  | an1 …… ani ……anj ……ann |

 那么我们将从第r行到第k行的每一行中相同列的加起来,可以得到一个一维数组如下:
 (ar1+……+ak1, ar2+……+ak2, ……,arn+……+akn)
 由此我们可以看出最后所求的就是此一维数组的最大子断和问题,到此我们已经将问题转化为上面的已经解决了的问题了。

1、如果没有最大子段和问题的基础,最直接的办法, 穷举法,对二维矩阵中所有子矩阵进行计算求得最大值,时间复杂度为(O(n^2*n^2));

2、基于最大子段和问题,算出任意n行的和数组,转变成最大字段和进行处理,对于任意n行,如果采用各个处理的话,其时间复杂度相对较高,所以对和数组的处理是本题的又一关键;

3、压缩矩阵

下面举一个简单的例子。在一个一维的数列中,要想求从第i个元素到第j个元素的和,我们可以用这样的方法:设数组sum[i]表示从第1个到第i个元素的和,则:求从第i个元素到第j个元素的和,只需用sum[j]-sum[i]就足够了。由此推广到二维矩阵,设sum[i,j]表示矩阵第j列前i个元素的和,cost[i,j]表示原始数据,则:

压缩数据程序代码为:

for i:=1 to n do

  for j:=1 to m do

    sum[i,j]:=sum[i-1,j]+cost[i,j];

下一个问题是,如何将数据从压缩的数组中读出。

读取数据代码为:

for i:=0 to n-1 do

  for j:=i+1 to n do

for k:=1 to n do temp[k]:=sum[j,k]-sum[i,k];

到此,最大子矩阵问题就完全转换为连续最大和问题。

#include<stdio.h>  
#include<string.h>  
#define MAXN 105  
int main()  
{  freopen("C:\\in.txt","r",stdin);  int dp[MAXN][MAXN];  int n,t;while (~scanf("%d",&n))  {  memset(dp,0,sizeof(dp));  for (int i=1;i<=n;++i)  {  for (int j=1;j<=n;++j)  {  scanf("%d",&t);  dp[i][j]=dp[i-1][j]+t;  }  }  int max=0;  for (int i=1;i<=n;++i)  {  for (int j=i;j<=n;++j)  {  int sum=0;  for (int k=1;k<=n;++k)  {  sum+=dp[j][k]-dp[i-1][k];   if (sum<0) sum=0;  if (sum>max) max=sum;  }  }  }  printf("%d\n",max);  }  return 0;  
}  

这篇关于动态规划3:最大子段和问题到最大子矩阵问题(三):初探最大子矩阵之和问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/666248

相关文章

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

MySQL版本问题导致项目无法启动问题的解决方案

《MySQL版本问题导致项目无法启动问题的解决方案》本文记录了一次因MySQL版本不一致导致项目启动失败的经历,详细解析了连接错误的原因,并提供了两种解决方案:调整连接字符串禁用SSL或统一MySQL... 目录本地项目启动报错报错原因:解决方案第一个:第二种:容器启动mysql的坑两种修改时区的方法:本地

springboot加载不到nacos配置中心的配置问题处理

《springboot加载不到nacos配置中心的配置问题处理》:本文主要介绍springboot加载不到nacos配置中心的配置问题处理,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录springboot加载不到nacos配置中心的配置两种可能Spring Boot 版本Nacos

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Java中JSON格式反序列化为Map且保证存取顺序一致的问题

《Java中JSON格式反序列化为Map且保证存取顺序一致的问题》:本文主要介绍Java中JSON格式反序列化为Map且保证存取顺序一致的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未... 目录背景问题解决方法总结背景做项目涉及两个微服务之间传数据时,需要提供方将Map类型的数据序列化为co