海贼王之伟大航路(状压DP 动态规划) 北京大学ACM/ICPC竞赛训练暑期课

本文主要是介绍海贼王之伟大航路(状压DP 动态规划) 北京大学ACM/ICPC竞赛训练暑期课,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

海贼王之伟大航路

  • 查看
  • 提交
  • 统计
  • 提问

总时间限制: 

1000ms

 

内存限制: 

65536kB

描述

“我是要成为海贼王的男人!”,路飞一边喊着这样的口号,一边和他的伙伴们一起踏上了伟大航路的艰险历程。

路飞他们伟大航路行程的起点是罗格镇,终点是拉夫德鲁(那里藏匿着“唯一的大秘宝”——ONE PIECE)。而航程中间,则是各式各样的岛屿。

因为伟大航路上的气候十分异常,所以来往任意两个岛屿之间的时间差别很大,从A岛到B岛可能需要1天,而从B岛到A岛则可能需要1年。当然,任意两个岛之间的航行时间虽然差别很大,但都是已知的。

现在假设路飞一行从罗格镇(起点)出发,遍历伟大航路中间所有的岛屿(但是已经经过的岛屿不能再次经过),最后到达拉夫德鲁(终点)。假设他们在岛上不作任何的停留,请问,他们最少需要花费多少时间才能到达终点?

输入

输入数据包含多行。
第一行包含一个整数N(2 < N ≤ 16),代表伟大航路上一共有N个岛屿(包含起点的罗格镇和终点的拉夫德鲁)。其中,起点的编号为1,终点的编号为N。
之后的N行每一行包含N个整数,其中,第i(1 ≤ i ≤ N)行的第j(1 ≤ j ≤ N)个整数代表从第i个岛屿出发到第j个岛屿需要的时间t(0 < t < 10000)。第i行第i个整数为0。

输出

输出为一个整数,代表路飞一行从起点遍历所有中间岛屿(不重复)之后到达终点所需要的最少的时间。

样例输入

样例输入1:
4
0 10 20 999
5 0 90 30
99 50 0 10
999 1 2 0样例输入2:
5
0 18 13 98 8
89 0 45 78 43 
22 38 0 96 12
68 19 29 0 52
95 83 21 24 0

样例输出

样例输出1:
100样例输出2:
137

提示

提示:
对于样例输入1:路飞选择从起点岛屿1出发,依次经过岛屿3,岛屿2,最后到达终点岛屿4。花费时间为20+50+30=100。
对于样例输入2:可能的路径及总时间为:
1,2,3,4,5: 18+45+96+52=211
1,2,4,3,5: 18+78+29+12=137
1,3,2,4,5: 13+38+78+52=181
1,3,4,2,5: 13+96+19+43=171
1,4,2,3,5: 98+19+45+12=174
1,4,3,2,5: 98+29+38+43=208
所以最短的时间花费为137
单纯的枚举在N=16时需要14!次运算,一定会超时。

 

1.用 dp[s][j] 表示经过集合s中的每个点恰好一次,且最后走的点是j (j ∈s)的最佳路径的长度。(集合s,用一般的形式表达是非常麻烦的,这个时候就可以考虑用状态压缩。用二进制表示,1表示已经被访问过,0表示未被访问。)

2.最终就是要求: min([ dp[all][j] ) ( 0 <= j < N ) all是所有点的集合。

3.状态方程:dp[s][j] = min{ dp[s’][k] + w[k][j] } (j ∈s, s’ = s – j, k ∈s’,枚举每个k, w[k][j]是k到j的边权值)

4.边界条件: dp[{i}][i] = 0

6.全部n个点的点集,对应的整数是: (1 << n) – 1
7.最终要求:min( dp[(1<<n)-1][j] ) ( 0 <= j < n )

8.位运算 (例:从集合i中去掉点j,得到新集合s’:    s’ = s & ( ~( 1 << j ) )  或    s’ = s - ( 1 << j ))

#include<iostream>
#define INF 0x3f3f3f3f
#define maxn (1<<16)+1
using namespace std;
int a[20][20],n;
int dp[maxn][20];int get(int i,int j)
{//dp[i,j]代表1到【i代表的这些点】所需的最少时间,且这趟旅程到的最后一个点在j if( j==1 && i!=1 ) return dp[i][j] = INF; //只有当旅程只包含1的时候最后一个到的点才能是1 if(dp[i][j]!=INF) return dp[i][j];if( i == 1 && j==1 )  return dp[i][j]=0;//枚举倒数第二个岛屿在哪for(int k=1;k<n;k++){if(k==j) continue;//倒数第二个岛不能是倒数第一个岛 if( i & 1<<(k-1) ) dp[i][j] = min( dp[i][j], get(i- (1<<(j-1)),k)+a[k][j] );}return dp[i][j];
}int main()
{for(int i=1;i<maxn;i++)for(int j=1;j<20;j++) dp[i][j]=INF;cin>>n;for(int i=1;i<=n;i++)for(int j=1;j<=n;j++) cin>>a[i][j];cout<<get( (1<<n)-1,n );return 0;
}

 

这篇关于海贼王之伟大航路(状压DP 动态规划) 北京大学ACM/ICPC竞赛训练暑期课的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/662812

相关文章

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C#如何动态创建Label,及动态label事件

《C#如何动态创建Label,及动态label事件》:本文主要介绍C#如何动态创建Label,及动态label事件,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#如何动态创建Label,及动态label事件第一点:switch中的生成我们的label事件接着,

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.