分别使用Matlab和OpenCV标定微距相机

2024-01-31 03:40

本文主要是介绍分别使用Matlab和OpenCV标定微距相机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

软件:
Matlab 2014a,VS 2013

棋盘格标定板:
方格边长0.5mm,横向角点数19个,纵向角点数15个。

相机内参估算

其实在已知相机的某些参数后,不进行标定也可以估计出大致的内参矩阵。

根据上一篇博文中对图像坐标系、相机坐标系和世界坐标系的学习,可以知道相机内参的形式:

        fx   0   u0K =   0  fy   v00   0    1

内参数为fx,fy,u0,v0。其中:fx=f/dx, fy=f/dy;u0,v0为主点坐标。

理想情况下:fx=fy;u0,v0分别为分辨率的一半,所以在已知焦距、图像分辨率和传感器尺寸等参数后,可以对理想情况下的内参进行估算。

以网上经常作为举例对象的NiKon D700相机为例:

焦距 f=35mm,最高分辨率 42562832,传感器尺寸 36.0mm23.9mm

则可计算出:

dx=36.0/4256,dy=23.9/2832 —> fx=f/dx=4137.8,fy=f/dy=4147.3

u0=4256/2=2128,v0=2832/2=1416

内参矩阵即为:

         4137.8     0       2128K =     0     4147.3    14160       0         1

但在对精度要求比较高的场合还是需要对相机进行标定,得到相机实际的内参和畸变参数。

Matlab标定工具箱

参考博客:http://blog.csdn.net/jameshater/article/details/53172333

该博客中工具箱各功能的使用介绍得十分详细,适合小白入门参考和需要复杂功能时的查阅。

由于我前期只需要简单标定得到内参,所以只进行最主要的三个步骤:读入图片,提取角点和相机标定。

过程记录如下:

1.标定工具箱的下载安装:

可按照参考博客中的网址下载。

下载后解压到matlab的工作路径,在命令窗口使用calib_gui打开。

2.读入图片

选择Standard(all the images are stored in memory)。

这里写图片描述

选择image names(在此之前需要将文件夹选为存放标定图片的那个)。

这里写图片描述

输入图片基名Basename(假如图片的存储名称为img1.jpg,则基名为数字前的img。我电脑中存储的直接为1.jpg,2.jpg…,所以此处直接键入回车)。

这里写图片描述

输入图片格式(根据自己图片存储情况和提示输入即可,我的是jpg格式,所以输入j)。

这里写图片描述

之后程序自动读取该文件夹下的图片并显示。

这里写图片描述

3.提取角点

选择Extract grid corners。

这里写图片描述

选择是否处理所有图片,可以输入图片索引,如[1,2,3],默认则处理第一步读取进的全部图片,无特殊需求则此处选择回车默认。

这里写图片描述

选择提取角点的窗口尺寸和是否自动提取,此处均回车默认即可。

这里写图片描述

显示第一张标定图片,手动选择四个边缘角点,一般按照:左上,右上,右下,左下的顺序。

这里写图片描述
这里写图片描述
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-M2m6neV2-1572752004434)(https://img-blog.csdn.net/20170811131103781?watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvQWlsZWVuTnV0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast)]
这里写图片描述

选择了四个角点后,需要输入x方向和y方向上的棋盘格小方格边长,我这里的dx=dy=0.5mm,故输入0.5。

这里写图片描述

显示提取角点后的图片,选择是否需要猜测畸变参数。根据角点提取效果自行选择,一般提取效果都很好,可以直接默认回车不猜测畸变;如果提取效果不理想,畸变较大,可以试凑查看效果,一般该参数在-1和1之间。

这里写图片描述

这里写图片描述

不断循环该过程直至所有图片的角点提取完毕。

这里写图片描述

4.相机标定

选择Calibration,即可得到标定结果。

这里写图片描述

选择Save,保存标定结果,文件名为Calib_Results.m。

这里写图片描述

OpenCV自带标定程序

参考博客:http://blog.csdn.net/t247555529/article/details/47836233#comments

1.新建工程demo,配置OpenCV环境。

2.生成标定时读取图片所需的yaml图片列表。

(1)添加源文件imagelist_creator.cpp,编译执行,在Debug文件夹中得到demo.exe。

(2)进入cmd,cd进入工程路径下的Dubug文件夹。
输入命令:demo imagelist.yaml 图片名
其中图片名是标定过程中使用的所有图片的名字,以我自己为例,此处键入1.jpg 2.jpg 3.jpg …

3.相机标定

(1)删除工程下的源文件imagelist_creator.cpp,添加calibration.cpp,编译执行,在Debug文件夹中得到demo.exe。

(2)将标定使用的图片放在Debug文件夹下。

(3)进入cmd,cd进入工程路径下的Debug文件夹。
输入命令: demo -w 19 -h 15 -s 0.5 imagelist.yaml
其中:-w为每行的角点个数,-h为每列的角点个数,-s为棋盘格的方格边长,单位为mm。

(4)标定结果会保存在Debug文件夹下的out_camera_data.yml中,此类文件可以使用Notepad++打开。

二者对比

1.Matlab标定工具箱

需要指定小方格的长宽(单位mm),并手动提取每张标定图的四个边角点,比较麻烦,但角点提取和标定效果较好。

这里写图片描述

2.OpenCV自带标定程序

需要指定小方格的边长(单位mm),行和列的角点数,自动提取,比较方便,但角点提取和标定效果有时不如人意。
可能比较适用于OpenCV示例中大且方格数量少的棋盘格标定板,对于我使用的0.5mm且方格数量较多的微距标定板效果很不理想。

这里写图片描述

3.其他OpenCV标定程序

在OpenCV官方自带标定程序标定失败后,也找了很多网上其他OpenCV标定程序。其在角点提取和处理上会比自带程序好很多,不会如此混乱。但在我将棋盘格小方格参数修改为标定板参数0.5mm后,会出现矩阵和参数无法计算,均为无效点1.#QNAN的情况。

根据目前标定的效果,虽然Matlab半自动有点麻烦,但我还是决定使用Matlab标定工具箱了…

最后,关于使用OpenCV标定的情况,如果有更好更精确的方法,或者能解决文中的问题,还望各位大牛不吝赐教,谢谢!

这篇关于分别使用Matlab和OpenCV标定微距相机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/662442

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Redis 基本数据类型和使用详解

《Redis基本数据类型和使用详解》String是Redis最基本的数据类型,一个键对应一个值,它的功能十分强大,可以存储字符串、整数、浮点数等多种数据格式,本文给大家介绍Redis基本数据类型和... 目录一、Redis 入门介绍二、Redis 的五大基本数据类型2.1 String 类型2.2 Hash

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他