贝叶斯优化调参实战(随机森林,lgbm波士顿房价)

2024-01-30 23:18

本文主要是介绍贝叶斯优化调参实战(随机森林,lgbm波士顿房价),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文名字叫做贝叶斯优化实战~~就说明我不会在这里讲它的理论知识。因为我还没看懂。。。

不过用起来是真的舒服,真是好用的不行呢~

开始本文之前,我先说一下我目前用到的调参的手段。

1.网格搜索与随机搜索:

图来自:https://www.cnblogs.com/marsggbo/p/9866764.html
我们都知道神经网络训练是由许多超参数决定的,例如网络深度,学习率,卷积核大小等等。所以为了找到一个最好的超参数组合,最直观的的想法就是Grid Search,其实也就是穷举搜索,示意图如下。
在这里插入图片描述
但是我们都知道机器学习训练模型是一个非常耗时的过程,而且现如今随着网络越来越复杂,超参数也越来越多,以如今计算力而言要想将每种可能的超参数组合都实验一遍(即Grid Search)明显不现实,所以一般就是事先限定若干种可能,但是这样搜索仍然不高效。

所以为了提高搜索效率,人们提出随机搜索,示意图如下。虽然随机搜索得到的结果互相之间差异较大,但是实验证明随机搜索的确比网格搜索效果要好。
在这里插入图片描述

2.贝叶斯优化

先说一下它的好处吧:我记得我之前调SVR网格搜索时候,就是一个噩梦,3000个数据也得搞个小一会~我知道我的小mbp是不适合运行这些,但是你这也太慢了吧。而且事实证明不仅慢,效果其实也有待商榷。算了,不讨论有多差了,来看看贝叶斯优化吧。真实太棒了。
下面我会以一个随机森林二分类与一个lightgbm回归两个例子展示贝叶斯优化,我相信以后遇到别的模型调参,有这两个模板在,问题都不大~我还是建议这些代码都要背下来,这样以后顺手就来多帅哦。
关于安装:

pip install bayesian-optimization

我的版本:
bayesian-optimization-1.0.0
bayesian-optimization 的github:https://github.com/fmfn/BayesianOptimization/blob/master/examples/basic-tour.ipynb

3.RF分类调参

参考:https://www.cnblogs.com/yangruiGB2312/p/9374377.html

from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
from sklearn.cross_validation import cross_val_score
from bayes_opt import BayesianOptimization# 产生随机分类数据集,10个特征, 2个类别
x, y = make_classification(n_samples=1000,n_features=10,n_classes=2)

我们先看看不调参的结果:

import numpy as np
rf = RandomForestClassifier()
print(np.mean(cross_val_score(rf, x, y, cv=20, scoring='roc_auc')))
0.9839600000000001

bayes调参初探
我们先定义一个目标函数,里面放入我们希望优化的函数。比如此时,函数输入为随机森林的所有参数,输出为模型交叉验证5次的AUC均值,作为我们的目标函数。因为bayes_opt库只支持最大值,所以最后的输出如果是越小越好,那么需要在前面加上负号,以转为最大值。由于bayes优化只能优化连续超参数,因此要加上int()转为离散超参数。

def rf_cv(n_estimators, min_samples_split, max_features, max_depth):val = cross_val_score(RandomForestClassifier(n_estimators=int(n_estimators),min_samples_split=int(min_samples_split),max_features=min(max_features, 0.999), # floatmax_depth=int(max_depth),random_state=2),x, y, 'roc_auc', cv=5).mean()return val

然后我们就可以实例化一个bayes优化对象了:

 rf_bo = BayesianOptimization(rf_cv,{'n_estimators': (10, 250),'min_samples_split': (2, 25),'max_features': (0.1, 0.999),'max_depth': (5, 15)})

里面的第一个参数是我们的优化目标函数,第二个参数是我们所需要输入的超参数名称,以及其范围。超参数名称必须和目标函数的输入名称一一对应。

完成上面两步之后,我们就可以运行bayes优化了!

rf_bo.maximize()

在这里插入图片描述
在这里插入图片描述
等到程序结束,我们可以查看当前最优的参数和结果:

rf_bo.max
{'target': 0.9896799999999999,'params': {'max_depth': 12.022326832956438,'max_features': 0.42437136034968226,'min_samples_split': 17.51437357464919,'n_estimators': 116.69549115408005}}

总结:在这里插入图片描述
由于我没有指定迭代次数。他就会首先随机找5个点,之后在迭代25次,共30次。

4.lgbm波士顿房价回归调参

贝叶斯优化github:
https://github.com/fmfn/BayesianOptimization/blob/master/examples/basic-tour.ipynb
因为这部分代码比较冗长,我写的时候也很费劲觉得,但是思想是很明确的。所以我就不加说明了,如有疑问请留言我进行文字补充。
以波士顿房价为例

#导入包
from sklearn.datasets import load_boston
from bayes_opt import BayesianOptimization
import lightgbm as lgb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
from sklearn import metrics
import matplotlib.pyplot as plt
import seaborn as sns
plt.style.use('ggplot')
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
data = load_boston()
data.keys()
dict_keys(['data', 'target', 'feature_names', 'DESCR'])
X = data.data
Y = data.target
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size=0.2,random_state=2019)
#   数据标准归一化
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.transform(X_test)

如果不调参:

regressor = lgb.LGBMRegressor(n_estimators=80)
regressor.fit(X_train,Y_train)
LGBMRegressor(boosting_type='gbdt', class_weight=None, colsample_bytree=1.0,importance_type='split', learning_rate=0.1, max_depth=-1,min_child_samples=20, min_child_weight=0.001, min_split_gain=0.0,n_estimators=80, n_jobs=-1, num_leaves=31, objective=None,random_state=None, reg_alpha=0.0, reg_lambda=0.0, silent=True,subsample=1.0, subsample_for_bin=200000, subsample_freq=0)
# plt.scatter(regressor.predict(X_test),Y_test)
sns.regplot(regressor.predict(X_test),Y_test)

在这里插入图片描述

#lgbm没有调参的r2
metrics.r2_score(regressor.predict(X_test),Y_test)
0.7846789447853599
#看看rf不调参的表现,只是看看,与本文无关
rf = RandomForestRegressor(n_estimators=80)
rf.fit(X_train,Y_train)
metrics.r2_score(rf.predict(X_test),Y_test)
0.7647630340879641

开始调参!!!

def LGB_CV(max_depth,num_leaves,min_data_in_leaf,feature_fraction,bagging_fraction,lambda_l1):folds = KFold(n_splits=5, shuffle=True, random_state=15)oof = np.zeros(X_train.shape[0])for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train, Y_train)):print("fold n°{}".format(fold_))trn_data = lgb.Dataset(X_train[trn_idx],label=Y_train[trn_idx],)val_data = lgb.Dataset(X_train[val_idx],label=Y_train[val_idx],)param = {'num_leaves': int(num_leaves),'min_data_in_leaf': int(min_data_in_leaf), 'objective':'regression','max_depth': int(max_depth),'learning_rate': 0.01,"boosting": "gbdt","feature_fraction": feature_fraction,"bagging_freq": 1,"bagging_fraction": bagging_fraction ,"bagging_seed": 11,"metric": 'rmse',"lambda_l1": lambda_l1,"verbosity": -1}clf = lgb.train(param,trn_data,5000,valid_sets = [trn_data, val_data],verbose_eval=500,early_stopping_rounds = 200)oof[val_idx] = clf.predict(X_train[val_idx],num_iteration=clf.best_iteration)del clf, trn_idx, val_idxreturn metrics.r2_score(oof, Y_train)
LGB_BO = BayesianOptimization(LGB_CV, {'max_depth': (4, 20),'num_leaves': (5, 130),'min_data_in_leaf': (5, 30),'feature_fraction': (0.7, 1.0),'bagging_fraction': (0.7, 1.0),'lambda_l1': (0, 6)})
LGB_BO.maximize(init_points=2,n_iter=3)

在这里插入图片描述
在这里插入图片描述
用调好的参数预测test

folds = KFold(n_splits=5, shuffle=True, random_state=15)
oof = np.zeros(X_train.shape[0])
predictions = np.zeros(X_test.shape[0])for fold_, (trn_idx, val_idx) in enumerate(folds.split(X_train, Y_train)):print("fold n°{}".format(fold_))trn_data = lgb.Dataset(X_train[trn_idx],label=Y_train[trn_idx],)val_data = lgb.Dataset(X_train[val_idx],label=Y_train[val_idx],)param = {'num_leaves': 6,'min_data_in_leaf': 5, 'objective':'regression','max_depth': 4,'learning_rate': 0.01,"boosting": "gbdt","feature_fraction": 0.9669589486825311,"bagging_freq": 1,"bagging_fraction":  0.8552076268718115 ,"bagging_seed": 11,"metric": 'rmse',"lambda_l1": 4.243403644533201,"verbosity": -1}clf = lgb.train(param,trn_data,5000,valid_sets = [trn_data, val_data],verbose_eval=500,early_stopping_rounds = 200)oof[val_idx] = clf.predict(X_train[val_idx],num_iteration=clf.best_iteration)
#     del clf, trn_idx, val_idxpredictions += clf.predict(X_test, num_iteration=clf.best_iteration) / folds.n_splits
#     del clf, trn_idx, val_idx
metrics.r2_score(predictions,Y_test)

在这里插入图片描述
可以看到,提升还是有的~~
over~有疑问欢迎交流
参考:
lgbm英文文档:
https://lightgbm.readthedocs.io/en/latest/Experiments.html

https://github.com/Microsoft/LightGBM/blob/master/examples/python-guide/simple_example.py

https://www.kaggle.com/fabiendaniel/hyperparameter-tuning/notebook

https://www.kaggle.com/rsmits/bayesian-optimization-for-lightgbm-parameters/notebook

https://www.cnblogs.com/yangruiGB2312/p/9374377.html

贝叶斯优化github:
https://github.com/fmfn/BayesianOptimization/blob/master/examples/basic-tour.ipynb

这篇关于贝叶斯优化调参实战(随机森林,lgbm波士顿房价)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/661861

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

在Spring Boot中集成RabbitMQ的实战记录

《在SpringBoot中集成RabbitMQ的实战记录》本文介绍SpringBoot集成RabbitMQ的步骤,涵盖配置连接、消息发送与接收,并对比两种定义Exchange与队列的方式:手动声明(... 目录前言准备工作1. 安装 RabbitMQ2. 消息发送者(Producer)配置1. 创建 Spr

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2