[足式机器人]Part3 机构运动学与动力学分析与建模 Ch01-2 完整定常系统——杆组RRR

本文主要是介绍[足式机器人]Part3 机构运动学与动力学分析与建模 Ch01-2 完整定常系统——杆组RRR,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

机械原理/机构简图/机构运动学推导/Kmtool.pkg
曲柄滑块机构运动学,五杆机构运动学,七杆机构运动学
本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。
2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
《空间机构的分析与综合(上册)》-张启先,感谢张启先先生对机构学的卓越贡献,希望下册有见天明之日!
《高等机构学》-白师贤
《高等空间机构学》-黄真
《机构运动微分几何学分析与综合》-王德伦

食用方法
什么是杆组?——自行学习机械原理内容
理解为什么需要编写杆组程序——基本杆组自由度为0
杆组程序的好处——所有机构都可拆分杆组,无需从头推导闭环矢量方程
六杆机构是不是也很简单了?
三级杆组?四级杆组?你能编写么?
务必自己计算编写程序

机构运动学与动力学分析与建模 Ch00-1-2 完整定常系统——杆组RRR

  • 1. RRR杆组
    • 1.1 公式推导
      • 1.1.1几何法
      • 1.1.2 公式推导——三角函数求解法
    • 1.2 程序说明
      • 1.2.1 输入变量
      • 1.2.2 输出变量
      • 1.2.3 哑元(中间变量)
      • 1.2.4 输入数据格式
      • 1.2.5 输出数据格式
      • 1.2.6 计算流程图
    • 1.3 程序算例
      • 1.3.1 四杆机构+单开链串联
      • 1.3.2 五杆机构——逆解
      • 1.3.3 双平行四边形——逆解
      • 1.3.4 七杆机构——优化求解


1. RRR杆组

1.1 公式推导

1.1.1几何法

下述公式中的投影参数都是基于坐标系 { F } \left\{ F \right\} {F}进行描述的

已知杆组RRR两端回转副位置参数: A : ( x A , y A ) , C : ( x C , y C ) A:(x_A,y_A),C:(x_C,y_C) A:(xA,yA),C:(xC,yC) ,求解中间回转副B位置参数(要求B点位置存在——满足三角形存在条件)
在这里插入图片描述
其中,AC长为: l A C = ( x C − x A ) 2 + ( y C − y A ) 2 l_{AC}=\sqrt{(x_C-x_A)^2+(y_C-y_A)^2} lAC=(xCxA)2+(yCyA)2 ,且有:
{ φ = a r c tan ⁡ ( z C − z A x C − x A ) ∈ ( − π 2 , π 2 ) d = l A C α 1 = a r c cos ⁡ ( l A B 2 + l A C 2 − l B C 2 2 l A B l A C ) ∈ ( 0 , π ) α 2 = a r c cos ⁡ ( l A B 2 + l B C 2 − l A C 2 2 l A B l B C ) ∈ ( 0 , π ) α 3 = a r c cos ⁡ ( l A C 2 + l B C 2 − l A B 2 2 l A C l B C ) ∈ ( 0 , π ) \left\{ \begin{array}{c} \varphi =\mathrm{arc}\tan \left( \frac{z_C-z_A}{x_C-x_A} \right) \in (-\frac{\pi}{2},\frac{\pi}{2})\\ d=l_{AC}\\ \alpha _1=\mathrm{arc}\cos \left( \frac{{l_{AB}}^2+{l_{AC}}^2-{l_{BC}}^2}{2l_{AB}l_{AC}} \right) \in (0,\pi )\\ \alpha _2=\mathrm{arc}\cos \left( \frac{{l_{AB}}^2+{l_{BC}}^2-{l_{AC}}^2}{2l_{AB}l_{BC}} \right) \in (0,\pi )\\ \alpha _3=\mathrm{arc}\cos \left( \frac{{l_{AC}}^2+{l_{BC}}^2-{l_{AB}}^2}{2l_{AC}l_{BC}} \right) \in (0,\pi )\\ \end{array} \right. φ=arctan(xCxAzCzA)(2π,2π)d=lACα1=arccos(2lABlAClAB2+lAC2lBC2)(0,π)α2=arccos(2lABlBClAB2+lBC2lAC2)(0,π)α3=arccos(2lAClBClAC2+lBC2lAB2)(0,π)
建立闭环矢量方程: R ⃗ F A + l ⃗ A B + l ⃗ B C = R ⃗ F C \vec{R}_{FA}+\vec{l}_{AB}+\vec{l}_{BC}=\vec{R}_{FC} R FA+l AB+l BC=R FC ,向固定坐标系基矢量投影,可得:
{ i ^ f : x A + l A B cos ⁡ θ A + l B C cos ⁡ θ B = x C j ^ f : y A + l A B sin ⁡ θ A + l B C sin ⁡ θ B = y C \left\{ \begin{array}{l} \hat{i}^f:x_A+l_{AB}\cos \theta _A+l_{BC}\cos \theta _B=x_C\\ \hat{j}^f:y_A+l_{AB}\sin \theta _A+l_{BC}\sin \theta _B=y_C\\ \end{array} \right. {i^f:xA+lABcosθA+lBCcosθB=xCj^f:yA+lABsinθA+lBCsinθB=yC
其中,位置参数 A : ( x A , y A ) , C : ( x C , y C ) A:(x_A,y_A),C:(x_C,y_C) A:(xA,yA),C:(xC,yC)已知 ,杆长 l A B , l B C l_{AB},l_{BC} lAB,lBC已知,求解可得:
θ A 1 = { φ + α 1 ( x C − x A ≥ 0 ) φ + α 1 + π ( x C − x A ≤ 0 ) , θ A 2 = { φ − α 1 ( x C − x A ≥ 0 ) φ − α 1 + π ( x C − x A ≤ 0 ) \theta _{A1}=\left\{ \begin{array}{c} \varphi +\alpha _1(x_C-x_A\ge 0)\\ \varphi +\alpha _1+\pi (x_C-x_A\le 0)\\ \end{array} \right. ,\theta _{A2}=\left\{ \begin{array}{c} \varphi -\alpha _1(x_C-x_A\ge 0)\\ \varphi -\alpha _1+\pi (x_C-x_A\le 0)\\ \end{array} \right. θA1={φ+α1(xCxA0)φ+α1+π(xCxA0),θA2={φα1(xCxA0)φα1+π(xCxA0)
θ B 1 = θ A 1 − π + α 2 , θ B 2 = θ A 2 − π − α 2 \theta _{B1}=\theta _{A1}-\pi +\alpha _2,\theta _{B2}=\theta _{A2}-\pi -\alpha _2 θB1=θA1π+α2,θB2=θA2πα2
则B点坐标为: ( x A + l A B cos ⁡ θ A , y A + l A B sin ⁡ θ A ) (x_A+l_{AB}\cos \theta _A,y_A+l_{AB}\sin \theta _A) (xA+lABcosθA,yA+lABsinθA)

  • 构件运动参数:
    将闭环矢量方程对时间 t t t 求导:

这篇关于[足式机器人]Part3 机构运动学与动力学分析与建模 Ch01-2 完整定常系统——杆组RRR的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/660430

相关文章

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

Java高效实现Word转PDF的完整指南

《Java高效实现Word转PDF的完整指南》这篇文章主要为大家详细介绍了如何用Spire.DocforJava库实现Word到PDF文档的快速转换,并解析其转换选项的灵活配置技巧,希望对大家有所帮助... 目录方法一:三步实现核心功能方法二:高级选项配置性能优化建议方法补充ASPose 实现方案Libre

python连接sqlite3简单用法完整例子

《python连接sqlite3简单用法完整例子》SQLite3是一个内置的Python模块,可以通过Python的标准库轻松地使用,无需进行额外安装和配置,:本文主要介绍python连接sqli... 目录1. 连接到数据库2. 创建游标对象3. 创建表4. 插入数据5. 查询数据6. 更新数据7. 删除

Linux查询服务器系统版本号的多种方法

《Linux查询服务器系统版本号的多种方法》在Linux系统管理和维护工作中,了解当前操作系统的版本信息是最基础也是最重要的操作之一,系统版本不仅关系到软件兼容性、安全更新策略,还直接影响到故障排查和... 目录一、引言:系统版本查询的重要性二、基础命令解析:cat /etc/Centos-release详