Python 数据分析实战——社交游戏的用户流失?酒卷隆治_案例2

本文主要是介绍Python 数据分析实战——社交游戏的用户流失?酒卷隆治_案例2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

# 什么样的顾客会选择离开

# 数据集

DAU : 每天至少来访问一次的用户数据

数据内容 数据类型 字段名

访问时间 string(字符串) log_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

USER_INFO:用户属性数据

数据内容 数据类型 字段名

首次使用日期 string(字符串) install_data

应用名称 string(字符串) app_name

用户 ID int(数值) user_id

性别(女性、男性) string(字符串) gender

年龄段(10、20、30、40、50) int(数值) generation

设备类型(iOS、Android) string(字符串) device_type

# 加载模块
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
plt.rcParams['font.sans-serif']=['SimHei'] # 用来显示中文# 导入数据
DAU = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section4-dau.csv")
USER_INFO = pd.read_csv("D:/data/datasource/数据分析实战_酒卷隆治/R/section4-user_info.csv")

# merge data 
data = pd.merge(DAU,USER_INFO,on='user_id',how='left')
data['log_mon'] = data.log_date.apply(lambda x: pd.to_datetime(x).strftime('%Y-%m'))
data.head(10)
# 数据分析
# 用户群分析(性别)
df_gender = pd.pivot_table(data,values='user_id',index = 'log_mon',columns='gender',aggfunc='count').reset_index()
df_gender['prop_f'] = df_gender['F']/(df_gender['F']+df_gender['M'])
df_gender['prop_m'] = df_gender['M']/(df_gender['F']+df_gender['M'])
df_gender

# 根据上述数据,可以发现9月份的整体数据下降,但是男女比例的构成几乎没有变。
# 由此可以判断性别属性对用户数量下降的影响很小。
# 用户群分析(年龄)
age_min = data['generation'].min()
age_max = data['generation'].max()
# print(age_min, age_max)
# 将年龄进行分组
data['age_group'] =pd.cut(data.generation,bins=[age_min-1,19,29,39,49,59],labels=['10~19','20~29','30~39','40~49','50~59']) df_age = pd.pivot_table(data,values='user_id',index = 'log_mon',columns='age_group',aggfunc='count').reset_index()
# print(df_age.columns)
# 计算不同age_group 占比
for i in df_age.columns:if i != 'log_mon':var = i+'_prop'df_age[var] = df_age[i]/(df_age['10~19']+df_age['20~29']+df_age['30~39']+df_age['40~49']+df_age['50~59'])df_age[['10~19_prop','20~29_prop','30~39_prop','40~49_prop','50~59_prop']]  

# 通过比较不同年龄段的占比,发现不同年龄群的用户在月总数据中的占比没有发生大的变化,说明年龄属性对用户的下降影响很小。
# 用户群分析(性别*年龄)
df_mix = pd.pivot_table(data,values='user_id',index = 'log_mon',columns=['gender','age_group'],aggfunc='count')
df_mix

# 通过将性别于年龄进行交叉组合,发现每个用户群所占的比例大体没变。
# 用户群分析(设备类型)
df_device = pd.pivot_table(data,values='user_id',index='log_mon',columns='device_type',aggfunc='count').reset_index()
df_device

# 发现IOS设备的用户数略有下降,而Android 的用户却大量减少。
# 再进一步的通过时间序列图确认用户数变化的程度from datetime import datetime
import matplotlib
from matplotlib import dates as mdates fig = plt.figure(figsize=(10,4))  # 设置画布大小
# 生成可视化数据
df = pd.pivot_table(data,values='user_id',index='log_date',columns='device_type',aggfunc='count').reset_index()
df['log_date'] = df.log_date.apply(lambda x:pd.to_datetime(x))# 画图
plt.plot(df.log_date, df.Android,marker='o',label='Android')
plt.plot(df.log_date,df.iOS,marker='*',label='iOS')plt.legend()
plt.title('不同类型设备的用户数变化')
# 设置坐标轴
plt.xticks(df.log_date , rotation=45) 
plt.gca().xaxis.set_major_formatter(matplotlib.dates.DateFormatter('%Y-%m-%d')) # 设置显示格式
plt.gca().xaxis.set_major_locator(mdates.DayLocator(interval=3)) # 日期间隔

 解决对策

# 从图可知,iOS设备的用户数和之前的大体相同,再一个区间内震荡。

# 但安卓用户数2013-09第二周开始急剧减少。经与开发部门确认,9月12号有一次设备升级,部分机型通过测试。在导出流失的用户机型数据后,发现系统版本存在问题,在修复系统后用户数据恢复正常。

这篇关于Python 数据分析实战——社交游戏的用户流失?酒卷隆治_案例2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/660058

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd