用C#实现最小二乘法(用OxyPlot绘图)

2024-01-30 08:44

本文主要是介绍用C#实现最小二乘法(用OxyPlot绘图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小二乘法介绍✨

最小二乘法(Least Squares Method)是一种常见的数学优化技术,广泛应用于数据拟合、回归分析和参数估计等领域。其目标是通过最小化残差平方和来找到一组参数,使得模型预测值与观测值之间的差异最小化。

最小二乘法的原理✨

线性回归模型将因变量 (y) 与至少一个自变量 (x) 之间的关系建立为:

image-20240118105946580

在 OLS 方法中,我们必须选择一个b1和b0的值,以便将 y 的实际值和拟合值之间的差值的平方和最小化。

平方和的公式如下:

image-20240118110247858

我们可以把它看成是一个关于b1和b0的函数,分别对b1和b0求偏导,然后让偏导等于0,就可以得到最小平方和对应的b1和b0的值。

先说结果,斜率最后推导出来如下所示:

截距推导出来结果如下:

don’t worry about that,慢慢推导总是可以弄明白的(不感兴趣可以直接略过):

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

最小二乘法推导2

最小二乘法推导3

用C#实现最小二乘法✨

创建数据点✨

首先创建想要拟合的数据点:

 NDArray? x, y;

x,y为全局变量。

  //使用NumSharp创建线性回归的数据集x = np.arange(0, 10, 0.2);y = 2 * x + 3 + np.random.normal(0, 3, x.size);

使用到了NumSharp,需要为项目添加NumSharp包:

image-20240120100221733

 x = np.arange(0, 10, 0.2);

的意思是x从0增加到10(不包含10),步长为0.2:

image-20240120100455351

np.random.normal(0, 3, x.size);

的意思是生成了一个均值为0,标准差为3,数量与x数组长度相同的正态分布随机数数组。这个数组被用作线性回归数据的噪声。

使用OxyPlot画散点图✨

OxyPlot是一个用于在.NET应用程序中创建数据可视化图表的开源图表库。它提供了丰富的功能和灵活性,使开发者能够轻松地在其应用程序中集成各种类型的图表,包括折线图、柱状图、饼图等。

image-20240120101110294

添加OxyPlot.WindowsForms包:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

将PlotView控件添加到窗体设计器上:

image-20240120101340414

// 初始化散点图数据
var scatterSeries = new ScatterSeries
{MarkerType = MarkerType.Circle,MarkerSize = 5,MarkerFill = OxyColors.Blue
};

表示标志为圆形,标志用蓝色填充,标志的大小为5。

  for (int i = 0; i < x.size; i++){scatterSeries.Points.Add(new ScatterPoint(x[i], y[i]));}

添加数据点。

 PlotModel? plotModel;

将plotModel设置为全局变量。

 // 创建 PlotModelplotModel = new PlotModel(){Title = "散点图"};plotModel.Series.Add(scatterSeries);// 将 PlotModel 设置到 PlotViewplotView1.Model = plotModel;

这样就成功绘制了散点图,效果如下所示:

image-20240120102920929

使用最小二乘法拟合数据点✨

double a = 0;
double c = 0;double x_mean = x?.mean();
double y_mean = y?.mean();//计算a和c
for(int i = 0; i < x?.size; i++) 
{a += (x[i] - x_mean) * (y?[i] - y_mean);c += (x[i] - x_mean) * (x[i] - x_mean);
}//计算斜率和截距
double m = a / c;
double b = y_mean - m * x_mean;//拟合的直线
var y2 = m * x + b;

套用公式就可以,a表示上面斜率公式的上面那部分,c表示上面斜率公式的下面那部分。

double x_mean = x?.mean();
double y_mean = y?.mean();

计算x与y的平均值。

使用OxyPlot画拟合出来的直线✨

 //画这条直线         var lineSeries = new LineSeries{Points = { new DataPoint(x?[0], y2[0]), new DataPoint(x?[-1], y2[-1]) },Color = OxyColors.Red};// 创建 PlotModel         plotModel?.Series.Add(lineSeries);// 为图表添加标题if (plotModel != null){plotModel.Title = $"拟合的直线 y = {m:0.00}x + {b:0.00}";}// 刷新 PlotViewplotView1.InvalidatePlot(true);
 Points = { new DataPoint(x?[0], y2[0]), new DataPoint(x?[-1], y2[-1]) },

画直线只要添加两个点就好了x?[0], y2[0]表示x和y的第一个点,x?[-1], y2[-1]) 表示x和y的最后一个点,使用了NumSharp的切片语法。

画出来的效果如下所示:

image-20240120103737259

C#实现的全部代码:

using NumSharp;
using OxyPlot.Series;
using OxyPlot;
namespace OlsRegressionDemoUsingWinform
{public partial class Form1 : Form{NDArray? x, y;PlotModel? plotModel;public Form1(){InitializeComponent();}private void button1_Click(object sender, EventArgs e){//使用NumSharp创建线性回归的数据集x = np.arange(0, 10, 0.2);y = 2 * x + 3 + np.random.normal(0, 3, x.size);// 初始化散点图数据var scatterSeries = new ScatterSeries{MarkerType = MarkerType.Circle,MarkerSize = 5,MarkerFill = OxyColors.Blue};for (int i = 0; i < x.size; i++){scatterSeries.Points.Add(new ScatterPoint(x[i], y[i]));}// 创建 PlotModelplotModel = new PlotModel(){Title = "散点图"};plotModel.Series.Add(scatterSeries);// 将 PlotModel 设置到 PlotViewplotView1.Model = plotModel;}private void button2_Click(object sender, EventArgs e){double a = 0;double c = 0;double x_mean = x?.mean();double y_mean = y?.mean();//计算a和cfor(int i = 0; i < x?.size; i++) {a += (x[i] - x_mean) * (y?[i] - y_mean);c += (x[i] - x_mean) * (x[i] - x_mean);}//计算斜率和截距double m = a / c;double b = y_mean - m * x_mean;//拟合的直线var y2 = m * x + b;//画这条直线         var lineSeries = new LineSeries{Points = { new DataPoint(x?[0], y2[0]), new DataPoint(x?[-1], y2[-1]) },Color = OxyColors.Red};// 创建 PlotModel         plotModel?.Series.Add(lineSeries);// 为图表添加标题if (plotModel != null){plotModel.Title = $"拟合的直线 y = {m:0.00}x + {b:0.00}";}// 刷新 PlotViewplotView1.InvalidatePlot(true);}}
}

用Python实现最小二乘法✨

import numpy as np
import matplotlib.pyplot as plt# 用最小二乘法拟合 y = mx + b# 设置随机数种子以保证结果的可复现性
np.random.seed(0)# 生成一个在[0, 10]区间内均匀分布的100个数作为x
x = np.linspace(0, 10, 100)# 生成y,y = 2x + 噪声,其中噪声是[0, 10)之间的随机整数
y = 2 * x + 5 + np.random.randint(0, 10, size=100)# 计算x和y的均值
x_mean = np.mean(x)
y_mean = np.mean(y)a = 0
c = 0for i in range(x.shape[0]):a += (x[i] - x_mean) * (y[i] - y_mean)c += (x[i] - x_mean) ** 2# 计算斜率和截距
m = a / c
b = y_mean - m * x_mean# 画这条直线
y2 = m * x + b
plt.plot(x, y2, color='red')# 画数据点
plt.scatter(x, y)
plt.xlabel('x')
plt.ylabel('y')
plt.title(f'y = {m:.2f}x + {b:.2f}')
plt.show()

运行效果如下所示:

image-20240120104300224

总结✨

本文向大家介绍了最小二乘法以及公式推导的过程,并使用C#与Python进行实现。重点介绍了C#中是如何实现的,同时介绍了在C#中如何使用OxyPlot绘图。希望对你有所帮助。

参考✨

1、Understanding Ordinary Least Squares (OLS) Regression | Built In

2、Machine Learning Series-Linear Regression Ordinary Least Square Method - YouTube

这篇关于用C#实现最小二乘法(用OxyPlot绘图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/659692

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统