集训队作业2018: 青春猪头少年不会梦到兔女郎学姐(多限制容斥)(生成函数)(组合数学)

本文主要是介绍集训队作业2018: 青春猪头少年不会梦到兔女郎学姐(多限制容斥)(生成函数)(组合数学),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题意

给定 n n n 种颜色的球,第 i i i 种颜色的球数量为 a i a_i ai 个,一种排列的贡献可以如下计算:先把这个序列首尾相连,然后把所有相邻且颜色相同的段拿出来,贡献为他们的长度之积,求所有排列的贡献和,原排列不同,首尾相连后相同的排列不算同一种。模 998244353 998244353 998244353


先考虑一个序列怎么做
我们对每一个 i i i 枚举将 a i a_i ai 分成 b i b_i bi 段,算出这种情况下的方案数已经每一种颜色的贡献
那么答案可以表示为(用 f ( a , b ) f(a,b) f(a,b) 表示把 a a a 分成 b b b 段的所有情况的系数之和)
∑ b w a y s ∗ ∏ f ( a i , b i ) \sum_{b}ways*\prod f(a_i,b_i) bwaysf(ai,bi)
发现 f f f 就是把 a a a 分成 b b b 块然后每一块选一个的方案数,巧妙地发现 f ( a , b ) = ( a + b − 1 b ∗ 2 − 1 ) = ( a + b − 1 a − b ) f(a,b)=\binom{a+b-1}{b*2-1}=\binom{a+b-1}{a-b} f(a,b)=(b21a+b1)=(aba+b1)
考虑求 w a y s ways ways,把所有颜色放在一起容斥,枚举强制合并的端点个数
w a y s = ∑ c ( ∏ ( b i − 1 c i ) ( − 1 ) c i ) ( ∑ b i − c i ) ! ∏ ( b i − c i ) ! ways=\sum_{c}(\prod \binom{b_i-1}{c_i}(-1)^{c_i})\frac{(\sum b_i-c_i)!}{\prod(b_i-c_i)!} ways=c((cibi1)(1)ci)(bici)!(bici)!
那么放到一起就是,换成枚举合并之后的段数
∑ b ∑ c ∏ f ( a i , b i ) ( b i − 1 c i − 1 ) ( − 1 ) b i − c i ( ∑ c i ) ! ∏ c i ! \sum_b\sum_c\prod f(a_i,b_i)\binom{b_i-1}{c_i-1}(-1)^{b_i-c_i}\frac{(\sum c_i)!}{\prod c_i!} bcf(ai,bi)(ci1bi1)(1)bicici!(ci)!
发现后面有一个 ∏ c i ! \prod c_i! ci!,考虑构造每一种颜色的 E G F EGF EGF
∑ c x c c ! ∑ b ≥ c f ( a i , b i ) ( b i − 1 c i − 1 ) ( − 1 ) b i − c i \sum_{c}\frac{x^c}{c!}\sum_{b\ge c}f(a_i,b_i)\binom{b_i-1}{c_i-1}(-1)^{b_i-c_i} cc!xcbcf(ai,bi)(ci1bi1)(1)bici
后面的一坨可以 N T T NTT NTT 求,然后分治 F F T FFT FFT 就可以全部乘起来

考虑环的情况怎么做
强制以 1 开头,那么 1 的生成函数的 x c x^c xc 会变成 x c − 1 x^{c-1} xc1
减去强制以 1 开头,以 1 结尾的个数,这个的 x c x^c xc 会变成 x c − 2 x^{c-2} xc2

但发现还是不对,如果环的循环是 T T T 的话,我们需要统计 T T T 遍,而实际上只统计了
b 1 ∑ a i T \frac{b_1}{\frac{\sum a_i}{T}} Taib1 遍,我们将第一个生成函数中含 b b b 的项除一个 b 1 b_1 b1,最后乘上 m m m 就可以了

#include<bits/stdc++.h>
#define cs const
using namespace std;
cs int N = 2e5 + 5;
int read(){int cnt = 0, f = 1; char ch = 0;while(!isdigit(ch)){ ch = getchar(); if(ch == '-') f = -1; }while(isdigit(ch)) cnt = cnt*10 + (ch-'0'), ch = getchar();return cnt * f;
}
#define poly vector<int>
#define pb push_back
cs int Mod = 998244353;
int add(int a, int b){ return a + b >= Mod ? a + b - Mod : a + b; }
int mul(int a, int b){ return 1ll * a * b % Mod; }
int dec(int a, int b){ return a - b < 0 ? a - b + Mod : a - b; }
void Add(int &a, int b){ a = add(a, b); }
void Dec(int &a, int b){ a = dec(a, b); }
void Mul(int &a, int b){ a = mul(a, b); }
int coe(int a){ return (a&1)?Mod-1:1; }
int ksm(int a, int b){ int ans=1; for(;b;b>>=1,a=mul(a,a)) if(b&1) ans=mul(ans,a); return ans; } 
int n, m, a[N];
int fac[N], ifac[N], inv[N];
poly f[N];
int C(int n, int m){ if(n<0||m<0||n<m) return 0; return mul(fac[n],mul(ifac[n-m],ifac[m])); }
void Fac_init(int n){fac[0]=fac[1]=ifac[0]=ifac[1]=inv[0]=inv[1]=1;for(int i=2; i<=n; i++) inv[i]=mul(Mod-Mod/i,inv[Mod%i]);for(int i=2; i<=n; i++) fac[i]=mul(fac[i-1],i), ifac[i]=mul(ifac[i-1],inv[i]);
}
cs int K = 18;
poly w[K+1];
poly rev; int up, bit;
void init(int deg){up=1,bit=0; while(up<deg) up<<=1,++bit; rev.resize(up);for(int i=0; i<up; i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void NTT_init(){for(int i=1; i<=K; i++) w[i].resize(1<<i-1);int wn=ksm(3,(Mod-1)/(1<<K)); w[K][0] = 1; for(int i = 1; i < (1<<K-1); i++) w[K][i]=mul(w[K][i-1], wn);for(int i = K-1; i; i--) for(int j=0; j<(1<<i-1); j++) w[i][j]=w[i+1][j<<1];
}
void NTT(poly &a, int typ){for(int i=0; i<up; i++) if(i<rev[i]) swap(a[i],a[rev[i]]);for(int i=1,l=1; i<up; i<<=1,++l)for(int j=0; j<up; j+=(i<<1))for(int k=0; k<i; k++){int x=a[k+j], y=mul(a[k+j+i],w[l][k]);a[k+j]=add(x,y); a[k+j+i]=dec(x,y);}if(typ==-1){reverse(a.begin()+1,a.end());for(int iv=ksm(up,Mod-2),i=0; i<up; i++) a[i]=mul(a[i],iv);}
}
poly operator * (poly a, poly b){int deg = a.size()+b.size()-1; init(deg); a.resize(up); b.resize(up); NTT(a,1); NTT(b,1);for(int i=0; i<up; i++) a[i]=mul(a[i],b[i]); NTT(a,-1); a.resize(deg); return a;
}
poly Solve(int l, int r){if(l==r){ for(int i=1; i<f[l].size(); i++) Mul(f[l][i], ifac[i]); return f[l]; } int mid=(l+r)>>1; return Solve(l,mid) * Solve(mid+1,r);
}
int main(){n = read();for(int i = 1; i <= n; i++) m+=a[i]=read();	Fac_init(m); NTT_init();for(int i = 1; i <= n; i++){poly g(a[i]+1, 0), h(a[i]+1, 0);for(int j = 1; j <= a[i]; j++) g[j]=mul(fac[j-1], C(a[i]+j-1,a[i]-j));if(i==1) for(int j=1; j<=a[i]; j++) Mul(g[j], inv[j]);for(int j=0; j<=a[i]; j++) h[a[i]-j] = mul(ifac[j], coe(j));g=g*h; f[i].resize(a[i]+1);for(int j=1; j<=a[i]; j++) f[i][j]=mul(g[a[i]+j], ifac[j-1]);}poly F=Solve(2,n);poly G(a[1],0);for(int i=0; i<G.size(); i++) G[i]=mul(f[1][i+1], ifac[i]);G=G*F;int ans=0;for(int i=1; i<G.size(); i++) Add(ans, mul(G[i],fac[i]));if(a[1]>1){G=poly(a[1]-1,0);for(int i=0; i<G.size(); i++) G[i]=mul(f[1][i+2], ifac[i]);G=G*F;for(int i=1; i<G.size(); i++) Dec(ans, mul(G[i],fac[i]));} cout << mul(ans, m); return 0;
}

这篇关于集训队作业2018: 青春猪头少年不会梦到兔女郎学姐(多限制容斥)(生成函数)(组合数学)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/658692

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

go动态限制并发数量的实现示例

《go动态限制并发数量的实现示例》本文主要介绍了Go并发控制方法,通过带缓冲通道和第三方库实现并发数量限制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录带有缓冲大小的通道使用第三方库其他控制并发的方法因为go从语言层面支持并发,所以面试百分百会问到

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1