【省选模拟】Fac (生成函数)(组合意义)(拉格朗日反演)(倍增)(多项式全家桶)

本文主要是介绍【省选模拟】Fac (生成函数)(组合意义)(拉格朗日反演)(倍增)(多项式全家桶),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

传送门

  • 没有题解是真的秀,连蒙带猜搞了一天结果今天早上才写完,不过还好有 3 个神仙学长助力
    不知道题解是怎么想到的,所以只好直接说结论了

  • 经观察发现可以先求出 ( i k i − 1 ) 1 i \binom{ik}{i-1}\frac{1}{i} (i1ik)i1,这个在 k = 2 k=2 k=2 的时候是卡特兰数也就是二叉树的个数
    考虑将其扩展为 k k k 叉树,即证 f ( x ) = x f ( x ) k + 1 f(x)=xf(x)^k+1 f(x)=xf(x)k+1 ∑ ( i k i − 1 ) 1 i x i \sum \binom{ik}{i-1}\frac{1}{i}x^i (i1ik)i1xi 的生成函数

  • 证明:
    f ( x ) − 1 f ( x ) k = x , g ( x ) = x − 1 x k ⇒ [ x n ] f ( x ) = [ x n − 1 ] 1 n ( x g ( x ) ) n [ x n − 1 ] 1 n ( x g ( x ) ) n = [ x n − 1 ] 1 n ( x k + 1 x − 1 ) n \frac{f(x)-1}{f(x)^k}=x,g(x)=\frac{x-1}{x^k}\\ \Rightarrow [x^n]f(x)=[x^{n-1}]\frac{1}{n}(\frac{x}{g(x)})^n\\ [x^{n-1}]\frac{1}{n}(\frac{x}{g(x)})^n=[x^{n-1}]\frac{1}{n}(\frac{x^{k+1}}{x-1})^n f(x)kf(x)1=x,g(x)=xkx1[xn]f(x)=[xn1]n1(g(x)x)n[xn1]n1(g(x)x)n=[xn1]n1(x1xk+1)n
    中间用到了拉格朗日反演
    后面的一个是 ( x k + 1 x − 1 ) n = ∑ i ≤ k x i (\frac{x^{k+1}}{x-1})^n=\sum_{i\le k}x^i (x1xk+1)n=ikxi,所以组合意义是 x 1 + x 2 + ⋯ + x n = n − 1 , x i ≤ k x_1+x_2+\dots +x_n=n-1,x_i\le k x1+x2++xn=n1,xik,令 x = k − x x=k-x x=kx,即可得方案数为 ( k n n − 1 ) \binom{kn}{n-1} (n1kn)
    也同时证明了 n n n 个点的 k k k 叉树(有根无标号儿子有顺序)的个数是 ( n k n − 1 ) 1 n \binom{nk}{n-1}\frac{1}{n} (n1nk)n1

  • 于是问题就变成了解 x f ( x ) k − f ( x ) + 1 ≡ 0 ( m o d x n ) xf(x)^k-f(x)+1\equiv 0(mod\ x^n) xf(x)kf(x)+10(mod xn)
    这个是可以倍增的,假设已经求得 x f 0 k − f 0 + 1 ≡ 0 ( m o d x n ) xf_0^k-f_0+1\equiv 0(mod\ x^n) xf0kf0+10(mod xn)
    考虑扩展到 x f k − f + 1 ≡ 0 ( m o d x 2 n ) xf^k-f+1\equiv 0(mod\ x^{2n}) xfkf+10(mod x2n)
    我们只需要求出 [ n , 2 n ) [n,2n) [n,2n) 的系数,不妨令为 f 1 f_1 f1,我们用 f 0 + f 1 f_0+f_1 f0+f1 表示新的 f f f
    考虑前一半的贡献, x f 0 k xf_0^k xf0k [ n , 2 n ) [n,2n) [n,2n) 是有贡献的,不妨令为 A A A
    ( f 0 + f 1 ) k (f_0+f_1)^k (f0+f1)k [ n , 2 n ) [n,2n) [n,2n) 的贡献只会有一个 x x x 选到 [ n , 2 n ) [n,2n) [n,2n),故可以列出方程
    k f 1 f 0 k − 1 + A = f 1 kf_1f_0^{k-1}+A=f_1 kf1f0k1+A=f1
    解出即可,倍增算贡献还是比较巧妙
    C o d e Code Code,最慢的点跑了 1 s 1s 1s

这篇关于【省选模拟】Fac (生成函数)(组合意义)(拉格朗日反演)(倍增)(多项式全家桶)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/658678

相关文章

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五