【代码能力提升 | 代码阅读学习】分析 VoxelNet 的 主干

2024-01-29 18:20

本文主要是介绍【代码能力提升 | 代码阅读学习】分析 VoxelNet 的 主干,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 代码分析
    • VoxelNet model
    • 2.数据处理
      • 2.1单个样本处理
      • 2.2处理成batch
  • 最后,附上我一步步调试代码,到3D-conv

前言

代码来自:https://github.com/skyhehe123/VoxelNet-pytorch
其中 测试数据来自:https://github.com/gakkiri/simple-pointpillar

代码分析

VoxelNet model

  1. model forward()就是模型的输入,voxel_features, voxel_coords是一个 batch 的数据。

    • voxel_features: [P, T, C], voxel_coords: [P, 4]。如何知道是 batch中的第几个样本? voxel_coords中的[P, 0]维度告诉了,其中的数据巧妙处理在 文件 kitti.pytrain.py, 稍后我们介绍
    • 转换为grid tensor: voxel_indexing(), 其中sparse_features.t()应该有.t(), 不然维度不匹配报错,原代码错了。经过这一步,输出维度为[B, C, D, H, W]。【这个函数妙啊,一个索引匹配就完成了 点云=> 规则张量,美中不足的是原代码写错了,需要加个转置.t()
      • 一个小样例测试这段代码 正确与否
    import torchsparse_features = torch.tensor([[1.0, 1, 1], [2, 2, 2]])
    coords = torch.IntTensor([[0,0,0,1], [1,0,0,2]]) # [P, 4(id,x,y,z)]dense_feature = torch.zeros(3, 2, 3,3,3) # [dim, B, D, H, W]
    dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features.t()
    print(dense_feature[:, 0, 0, 0, 1])
    print(dense_feature[:, 1, 0, 0, 2])输出, 刚好索引回来
    tensor([1., 1., 1.])
    tensor([2., 2., 2.])
    
    • 然后可以经过3D-Conv,后续接你需要的 任务头head,上面才是 VoxelNet的主干,也是最难理解的地方。
class VoxelNet(nn.Module):def __init__(self):super(VoxelNet, self).__init__()self.svfe = SVFE()self.cml = CML()# self.rpn = RPN()def voxel_indexing(self, sparse_features, coords):"""sparse_features: [P, C]coords:[P, 4]"""dim = sparse_features.shape[-1]device = sparse_features.devicedense_feature = Variable(torch.zeros(dim, cfg.N, cfg.D, cfg.H, cfg.W).to(device))dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features.t()dense_feature = dense_feature.transpose(0, 1)# print(f"dense_feature.shape = {dense_feature.shape}")# return dense_feature.transpose(0, 1) # dense_feature.transpose(0, 1):[ B, C, D, H, W]return dense_featuredef forward(self, voxel_features, voxel_coords):"""P: 一个batch合计的 voxel的数量T:一个voxel的点数 35C:每个点 的维度 7(=4 + 3)voxel_features: [P, T, C]voxel_coords: [P, 4(1+3)] => 每个voxel_coords 含4个维度,分别为 1+3,这个1就是指代这个 voxel 原来在 batch的第几个(就是这样来区分的),3表示grid的坐标"""print(f"forward=============>")print(f'voxel_features.shape = {voxel_features.shape}, voxel_coords.shape = {voxel_coords.shape}') # voxel_features.shape = (20284, 35, 7), voxel_coords.shape = (20284, 4)# feature learning networkvwfs = self.svfe(voxel_features) # vwfs:[P, C]print(f'=> vwfs.shape = {vwfs.shape}') # vwfs.shape = torch.Size([20284, 128])vwfs = self.voxel_indexing(vwfs,voxel_coords)print(f'voxel_indexing ==> vwfs.shape = {vwfs.shape}') # voxel_indexing ==> vwfs.shape = torch.Size([2, 128, 10, 400, 352]) [B, C, D, H, W]# convolutional middle networkcml_out = self.cml(vwfs)print(f"cml_out.shape = {cml_out.shape}") # cml_out.shape = torch.Size([2, 64, 2, 400, 352])# # region proposal network# # merge the depth and feature dim into one, output probability score map and regression map# psm,rm = self.rpn(cml_out.view(cfg.N,-1,cfg.H, cfg.W))# return psm, rm

2.数据处理

2.1单个样本处理

kitti.py文件的 def __getitem__(self, i):

可以看到,每帧lidar:[N, C],读取后经过这样处理:

  • 数据增强,
  • 范围过滤,
  • 处理成规则张量preprocess, 维度从 [N, C] 变为 [P, T, C], 其中,P不定,T=35,C=7

在这里插入图片描述

它是这样 处理的,可以学习代码:
其实,我不是很明白,这里为什么要 换维度?按理说3D-Conv都一样。

        # convert to  (D, H, W)voxel_coords = voxel_coords[:,[2,1,0]]

    def preprocess(self, lidar):# shuffling the pointsnp.random.shuffle(lidar)voxel_coords = ((lidar[:, :3] - np.array([self.xrange[0], self.yrange[0], self.zrange[0]])) / (self.vw, self.vh, self.vd)).astype(np.int32)# convert to  (D, H, W)voxel_coords = voxel_coords[:,[2,1,0]]voxel_coords, inv_ind, voxel_counts = np.unique(voxel_coords, axis=0, \return_inverse=True, return_counts=True)voxel_features = []for i in range(len(voxel_coords)):voxel = np.zeros((self.T, 7), dtype=np.float32)pts = lidar[inv_ind == i]if voxel_counts[i] > self.T:pts = pts[:self.T, :]voxel_counts[i] = self.T# augment the pointsvoxel[:pts.shape[0], :] = np.concatenate((pts, pts[:, :3] - np.mean(pts[:, :3], 0)), axis=1)voxel_features.append(voxel)return np.array(voxel_features), voxel_coords

2.2处理成batch

train.py文件中

处理流程:从batch中取出每个样本sample,给 每个样本sample 的coord的第0列添加序号,标记 是batch的第几个样本,方便后面转换为规则张量【主要是这个】。

    def detection_collate(batch):voxel_features = []voxel_coords = []for i, sample in enumerate(batch):voxel_features.append(sample[0])voxel_coords.append(np.pad(sample[1], ((0, 0), (1, 0)),mode='constant', constant_values=i))return np.concatenate(voxel_features), \np.concatenate(voxel_coords), \

最后,附上我一步步调试代码,到3D-conv

import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.autograd import Variable
from config import config as cfg##### from my_kitti.py
import sys
sys.path.append(r"D:\workspace\【代码能力提升-深度学习】\voxel_and_pillar_code\VoxelNet-pytorch-master\VoxelNet-pytorch-master")import os
import os.path
import torch.utils.data as data
import utils
from utils import box3d_corner_to_center_batch, anchors_center_to_corner, corner_to_standup_box2d_batch
from data_aug import aug_data
# from box_overlaps import bbox_overlaps
import numpy as np
import cv2#### conv2d + bn + relu
class Conv2d(nn.Module):def __init__(self,in_channels,out_channels,k,s,p, activation=True, batch_norm=True):super(Conv2d, self).__init__()self.conv = nn.Conv2d(in_channels,out_channels,kernel_size=k,stride=s,padding=p)if batch_norm:self.bn = nn.BatchNorm2d(out_channels)else:self.bn = Noneself.activation = activationdef forward(self,x):x = self.conv(x)if self.bn is not None:x=self.bn(x)if self.activation:return F.relu(x,inplace=True)else:return x# conv3d + bn + relu
class Conv3d(nn.Module):def __init__(self, in_channels, out_channels, k, s, p, batch_norm=True):super(Conv3d, self).__init__()self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=k, stride=s, padding=p)if batch_norm:self.bn = nn.BatchNorm3d(out_channels)else:self.bn = Nonedef forward(self, x):x = self.conv(x)if self.bn is not None:x = self.bn(x)return F.relu(x, inplace=True)# Fully Connected Network
class FCN(nn.Module):def __init__(self,cin,cout):super(FCN, self).__init__()self.cout = coutself.linear = nn.Linear(cin, cout)self.bn = nn.BatchNorm1d(cout)def forward(self,x):# KK is the stacked k across batchkk, t, _ = x.shape # x:[P, T, C]x = self.linear(x.view(kk*t,-1))x = F.relu(self.bn(x))return x.view(kk,t,-1)# Voxel Feature Encoding layer
class VFE(nn.Module):def __init__(self,cin,cout):super(VFE, self).__init__()assert cout % 2 == 0self.units = cout // 2self.fcn = FCN(cin,self.units)def forward(self, x, mask):# point-wise feauturepwf = self.fcn(x) # pwf:[P, T, C]#locally aggregated featurelaf = torch.max(pwf,1)[0].unsqueeze(1).repeat(1,cfg.T,1)# point-wise concat featurepwcf = torch.cat((pwf,laf),dim=2) # point-wise and locally, cat起来# apply maskmask = mask.unsqueeze(2).repeat(1, 1, self.units * 2)pwcf = pwcf * mask.float()return pwcf# Stacked Voxel Feature Encoding
class SVFE(nn.Module):def __init__(self):super(SVFE, self).__init__()self.vfe_1 = VFE(7,32)self.vfe_2 = VFE(32,128)self.fcn = FCN(128,128)def forward(self, x): # x:[P, T, C]mask = torch.ne(torch.max(x,2)[0], 0)x = self.vfe_1(x, mask)x = self.vfe_2(x, mask)x = self.fcn(x)# element-wise max poolingx = torch.max(x,1)[0] # x: [P, C], 相当于 只取每个voxel 的max featurereturn x# Convolutional Middle Layer
class CML(nn.Module):def __init__(self):super(CML, self).__init__()self.conv3d_1 = Conv3d(128, 64, 3, s=(2, 1, 1), p=(1, 1, 1))self.conv3d_2 = Conv3d(64, 64, 3, s=(1, 1, 1), p=(0, 1, 1))self.conv3d_3 = Conv3d(64, 64, 3, s=(2, 1, 1), p=(1, 1, 1))def forward(self, x):x = self.conv3d_1(x)x = self.conv3d_2(x)x = self.conv3d_3(x)return x# Region Proposal Network
# class RPN(nn.Module):
#     def __init__(self):
#         super(RPN, self).__init__()
#         self.block_1 = [Conv2d(128, 128, 3, 2, 1)]
#         self.block_1 += [Conv2d(128, 128, 3, 1, 1) for _ in range(3)]
#         self.block_1 = nn.Sequential(*self.block_1)#         self.block_2 = [Conv2d(128, 128, 3, 2, 1)]
#         self.block_2 += [Conv2d(128, 128, 3, 1, 1) for _ in range(5)]
#         self.block_2 = nn.Sequential(*self.block_2)#         self.block_3 = [Conv2d(128, 256, 3, 2, 1)]
#         self.block_3 += [nn.Conv2d(256, 256, 3, 1, 1) for _ in range(5)]
#         self.block_3 = nn.Sequential(*self.block_3)#         self.deconv_1 = nn.Sequential(nn.ConvTranspose2d(256, 256, 4, 4, 0),nn.BatchNorm2d(256))
#         self.deconv_2 = nn.Sequential(nn.ConvTranspose2d(128, 256, 2, 2, 0),nn.BatchNorm2d(256))
#         self.deconv_3 = nn.Sequential(nn.ConvTranspose2d(128, 256, 1, 1, 0),nn.BatchNorm2d(256))#         self.score_head = Conv2d(768, cfg.anchors_per_position, 1, 1, 0, activation=False, batch_norm=False)
#         self.reg_head = Conv2d(768, 7 * cfg.anchors_per_position, 1, 1, 0, activation=False, batch_norm=False)#     def forward(self,x):
#         x = self.block_1(x)
#         x_skip_1 = x
#         x = self.block_2(x)
#         x_skip_2 = x
#         x = self.block_3(x)
#         x_0 = self.deconv_1(x)
#         x_1 = self.deconv_2(x_skip_2)
#         x_2 = self.deconv_3(x_skip_1)
#         x = torch.cat((x_0,x_1,x_2),1)
#         return self.score_head(x),self.reg_head(x)class VoxelNet(nn.Module):def __init__(self):super(VoxelNet, self).__init__()self.svfe = SVFE()self.cml = CML()# self.rpn = RPN()def voxel_indexing(self, sparse_features, coords):"""sparse_features: [P, C]coords:[P, 4]"""dim = sparse_features.shape[-1]device = sparse_features.devicedense_feature = Variable(torch.zeros(dim, cfg.N, cfg.D, cfg.H, cfg.W).to(device))dense_feature[:, coords[:,0], coords[:,1], coords[:,2], coords[:,3]]= sparse_features.t()dense_feature = dense_feature.transpose(0, 1)# print(f"dense_feature.shape = {dense_feature.shape}")# return dense_feature.transpose(0, 1) # dense_feature.transpose(0, 1):[ B, C, D, H, W]return dense_featuredef forward(self, voxel_features, voxel_coords):"""P: 一个batch合计的 voxel的数量T:一个voxel的点数 35C:每个点 的维度 7(=4 + 3)voxel_features: [P, T, C]voxel_coords: [P, 4(1+3)] => 每个voxel_coords 含4个维度,分别为 1+3,这个1就是指代这个 voxel 原来在 batch的第几个(就是这样来区分的),3表示grid的坐标"""print(f"forward=============>")print(f'voxel_features.shape = {voxel_features.shape}, voxel_coords.shape = {voxel_coords.shape}') # voxel_features.shape = (20284, 35, 7), voxel_coords.shape = (20284, 4)# feature learning networkvwfs = self.svfe(voxel_features) # vwfs:[P, C]print(f'=> vwfs.shape = {vwfs.shape}') # vwfs.shape = torch.Size([20284, 128])vwfs = self.voxel_indexing(vwfs,voxel_coords)print(f'voxel_indexing ==> vwfs.shape = {vwfs.shape}') # voxel_indexing ==> vwfs.shape = torch.Size([2, 128, 10, 400, 352]) [B, C, D, H, W]# convolutional middle networkcml_out = self.cml(vwfs)print(f"cml_out.shape = {cml_out.shape}") # cml_out.shape = torch.Size([2, 64, 2, 400, 352])# # region proposal network# # merge the depth and feature dim into one, output probability score map and regression map# psm,rm = self.rpn(cml_out.view(cfg.N,-1,cfg.H, cfg.W))# return psm, rmif __name__ == '__main__':class My_dataset(data.Dataset):def __init__(self, cfg):self.T = cfg.Tself.vd = cfg.vdself.vh = cfg.vhself.vw = cfg.vwself.xrange = cfg.xrangeself.yrange = cfg.yrangeself.zrange = cfg.zrangedef preprocess(self, lidar):# shuffling the pointsnp.random.shuffle(lidar)voxel_coords = ((lidar[:, :3] - np.array([self.xrange[0], self.yrange[0], self.zrange[0]])) / (self.vw, self.vh, self.vd)).astype(np.int32)# convert to  (D, H, W)voxel_coords = voxel_coords[:,[2,1,0]]voxel_coords, inv_ind, voxel_counts = np.unique(voxel_coords, axis=0, \return_inverse=True, return_counts=True)voxel_features = []for i in range(len(voxel_coords)):voxel = np.zeros((self.T, 7), dtype=np.float32)pts = lidar[inv_ind == i]if voxel_counts[i] > self.T:pts = pts[:self.T, :]voxel_counts[i] = self.T# augment the pointsvoxel[:pts.shape[0], :] = np.concatenate((pts, pts[:, :3] - np.mean(pts[:, :3], 0)), axis=1)voxel_features.append(voxel)return np.array(voxel_features), voxel_coords def detection_collate(batch):voxel_features = []voxel_coords = []for i, sample in enumerate(batch):voxel_features.append(sample[0])voxel_coords.append(np.pad(sample[1], ((0, 0), (1, 0)),mode='constant', constant_values=i))return np.concatenate(voxel_features), \np.concatenate(voxel_coords), \from config import config as cfg    my_dataset = My_dataset(cfg)        # lidar_file = self.lidar_path + '/' + self.file_list[i] + '.bin'lidar_file = r"D:\workspace\【代码能力提升-深度学习】\voxel_and_pillar_code\simple-pointpillar-main\simple-pointpillar-main\kitti_test_data\000000.bin"lidar = np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4) # (N, 4)print(f'lidar.shape = {lidar.shape}') # lidar.shape = (115384, 4)# 对单个样本lidar进行数据处理,包括数据增强,限制范围,预处理# 这里我们没有 gt_box3d ,所以忽略 aug_data# data augmentation# lidar, gt_box3d = aug_data(lidar, gt_box3d) # specify a rangelidar = utils.get_filtered_lidar(lidar )print(f'get_filtered_lidar => lidar.shape = {lidar.shape}') # get_filtered_lidar => lidar.shape = (62853, 4)voxel_features, voxel_coords = my_dataset.preprocess(lidar)print(f'voxel_features.shape = {voxel_features.shape}, voxel_coords.shape = {voxel_coords.shape}') print(f'type(voxel_features) = {type(voxel_features)}, type(voxel_coords) = {type(voxel_coords)}')# voxel_features.shape = (10142, 35, 7) = (P, T, C(4 + 3)), voxel_coords.shape = (10142, 3) (P, C(xyz))# type(voxel_features) = <class 'numpy.ndarray'>, type(voxel_coords) = <class 'numpy.ndarray'># 模拟一个 batch 两个样本batch = []batch.append((voxel_features, voxel_coords))batch.append((voxel_features, voxel_coords))batch_voxel_features, batch_voxel_coords = detection_collate(batch)# batch_voxel_features = Variable(torch.cuda.FloatTensor(batch_voxel_features)) # 变为 tensor类型batch_voxel_features = Variable(torch.FloatTensor(batch_voxel_features)) # 变为 tensor类型# print(f'batch_voxel_features.shape = {batch_voxel_features.shape}')# print(batch_voxel_coords[-5:])    model = VoxelNet()y = model(batch_voxel_features, batch_voxel_coords)

这篇关于【代码能力提升 | 代码阅读学习】分析 VoxelNet 的 主干的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657780

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.