【Linux】第三十九站:可重入函数、volatile、SIGCHLD信号

2024-01-29 16:52

本文主要是介绍【Linux】第三十九站:可重入函数、volatile、SIGCHLD信号,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、可重入函数
  • 二、volatile
  • 三、SIGCHLD信号

一、可重入函数

如下图所示,当我们进行链表的头插的时候,我们刚刚执行完第一条语句的时候,突然收到一个信号,然后我们这个信号的自定义捕捉方法中,正好还有一个头插,于是这个执行流再次进入这个函数中。执行完毕以后,返回到原来的执行流中继续运行。

这种现象就是函数被重入

就会导致下面的现象。

image-20240127195244183

我们可以看到,这个node2结点丢失了,最终导致了内存泄漏了

insert函数被不同的控制流程调用,有可能在第一次调用还没返回时就再次进入该函数,这称为重入,insert函数访问一个全局链表,有可能因为重入而造成错乱,像这样的函数称为 不可重入函数,反之,如果一个函数只访问自己的局部变量或参数,则称为可重入(Reentrant) 函数。

上面的现象是这样的:

  1. insert函数被mainh和handler执行流重复进入
  2. 导致了结点丢失,内存泄漏

所以我们有了如下定义:

如果一个函数,被重复进入的情况下,出错了,或者可能出错。

我们就要把这个函数叫做不可重入函数

否则叫做可重入函数

目前我们用到的大部分函数都是不可重入的!

如果一个函数符合以下条件之一则是不可重入的:

  • 调用了malloc或free,因为malloc也是用全局链表来管理堆的。
  • 调用了标准I/O库函数。标准I/O库的很多实现都以不可重入的方式使用全局数据结构

二、volatile

我们先看一下下面的代码

#include <iostream>
#include <unistd.h>
#include <signal.h>
#include <cstring>
using namespace std;int flag = 0;
void handler(int signo)
{cout << "catch a signal: " << signo <<endl;flag = 1;
}int main()
{signal(2, handler);while(!flag);cout << "process quit normal" << endl;return 0;
}

最终我们的结果如下

image-20240127202215532

一切都符合我们的预期

但是在极端情况下,由于main和handler属于两个执行流

编译器检测后发现这个flag没有发生过变化。检测的本质也是计算,逻辑运算,这里的逻辑反也是一种计算。

它会在优化条件下,flag变量可能被直接优化到CPU内的寄存器中。

如下所示,我们的g++可以通过带上O0~O3选项进行优化。后面的数字越大,优化级别越高

image-20240127202846501

如下所示,我们发现,如果是O0,就相当于没有优化,可以正常结束。如果是O1的话,那么此时就无法用二号信号退出了。

image-20240127203114223

如下所示,这是因为我们没有优化之前,CPU会不断的将内存中的数据放入到寄存器中。而我们使用2号信号修改了之后,也还是会不断的访存。所以这个flag会改变,所以就会跳出循环

image-20240127203617825

而现在,我们优化了之后,这个变量第一次拿到寄存器之后,就不再访存了,因为这样可以提高效率,就直接用寄存器当中的数据,而我们使用信号改掉的只是内存当中的数据。所以这里的运算就一直为真了。所以就不会退出了。

image-20240127204052935

这样因为优化,就如同形成了一个寄存器屏障。导致内存不可见了!

所以我们为了防止这样编译器的过度优化,我们可以给这个变量带上volatile关键字。

volatile int flag = 0; //防止编译器过度优化,保存内存的可见性

所以我们代码改为如下

#include <iostream>
#include <unistd.h>
#include <signal.h>
#include <cstring>
using namespace std;volatile int flag = 0;
void handler(int signo)
{cout << "catch a signal: " << signo <<endl;flag = 1;
}int main()
{signal(2, handler);while(!flag);cout << "process quit normal" << endl;return 0;
}

image-20240127204404438

三、SIGCHLD信号

我们之前用wait和waitpid函数清理僵尸进程,父进程可以阻塞等待子进程结束,也可以非阻塞地查询是否有子进程结束等待清理(也就是轮询的方式)。采用第一种方式,父进程阻塞了就不 能处理自己的工作了;采用第二种方式,父进程在处理自己的工作的同时还要记得时不时地轮询一 下,程序实现复杂。

其实,子进程在终止时会给父进程发SIGCHLD(17号)信号,该信号的默认处理动作是忽略,父进程可以自 定义SIGCHLD信号的处理函数,这样父进程只需专心处理自己的工作,不必关心子进程了,子进程 终止时会通知父进程,父进程在信号处理函数中调用wait清理子进程即可。

我们可以先捕捉一下17号信号,验证一下是否真的有17号信号

#include <iostream>
#include <unistd.h>
#include <signal.h>
#include <cstring>
using namespace std;void handler(int signo)
{cout << "I am process: " << getpid() << ", catch a signo: " << signo << endl; 
}int main()
{signal(17, handler);pid_t id = fork();if(id == 0){while(true){cout << "I am child process: " << getpid() << ", ppid: " << getppid() << endl;sleep(1);break;}cout << "child quit...!!!" << endl;exit(0);}//fatherwhile(true){cout << "I am father process: " << getpid() << endl;sleep(1);}return 0;
}

运行结果为

image-20240127211307262

所以利用这个17号信号,我们可以采用基于信号的方式进行等待

等待的好处:

  1. 获取子进程的退出状态,释放子进程的僵尸
  2. 虽然不知道父子谁先运行,但是我们清楚,一定是father最后退出

所以我们还是要调用wait/waitpid这样的接口。而且father必须保证自己是一直在运行的。

所以我们可以试着把子进程等待写入到信号捕捉函数中!

如下代码所示:

#include <iostream>
#include <unistd.h>
#include <signal.h>
#include <cstring>
#include <sys/wait.h>
#include <sys/types.h>
using namespace std;void handler(int signo)
{sleep(3);pid_t rid = waitpid(-1, nullptr, 0);cout << "I am process: " << getpid() << ", catch a signo: " << signo << "child process quit: " << rid << endl; 
}int main()
{signal(17, handler);pid_t id = fork();if(id == 0){while(true){cout << "I am child process: " << getpid() << ", ppid: " << getppid() << endl;sleep(3);break;}cout << "child quit...!!!" << endl;exit(0);}//fatherwhile(true){cout << "I am father process: " << getpid() << endl;sleep(1);}return 0;
}

运行结果如下所示

image-20240127212515932

如果有十个进程呢??如果同时退出呢??如果退出一半呢??

如果是个进程同时退出,那么上面代码就有问题了,因为可能一个进程进程正在退出的时候,已经将这个信号屏蔽了,导致有很多进程无法被回收,全部都是僵尸进程了。

如下代码所示,我们在捕捉函数中循环等待,但是要主要加上非阻塞式。否则会一直卡在那里了。

#include <iostream>
#include <unistd.h>
#include <signal.h>
#include <cstring>
#include <time.h>
#include <sys/wait.h>
#include <sys/types.h>
using namespace std;void handler(int signo)
{sleep(3);pid_t rid;while((rid = waitpid(-1, nullptr, WNOHANG)) > 0){cout << "I am process: " << getpid() << ", catch a signo: " << signo << "child process quit: " << rid << endl; }
}int main()
{srand(time(nullptr));signal(17, handler);for(int i = 0; i < 10; i++){pid_t id = fork();if(id == 0){while(true){cout << "I am child process: " << getpid() << ", ppid: " << getppid() << endl;sleep(10);break;}cout << "child quit...!!!" << endl;exit(0);}sleep(rand() % 5 + 3);}//fatherwhile(true){cout << "I am father process: " << getpid() << endl;sleep(1);}return 0;
}

image-20240127214154334

事实上,由于UNIX 的历史原因,要想不产生僵尸进程还有另外一种办法:父进程调 用sigaction将SIGCHLD的处理动作置为SIG_IGN,这样fork出来的子进程在终止时会自动清理掉,不会产生僵尸进程,也不会通知父进程。系统默认的忽略动作和用户用sigaction函数自定义的忽略 通常是没有区别的,但这是一个特例。此方法对于Linux可用,但不保证在其它UNIX系统上都可 用。

#include <iostream>
#include <unistd.h>
#include <signal.h>
#include <cstring>
#include <time.h>
#include <sys/wait.h>
#include <sys/types.h>
using namespace std;
int main()
{signal(17, SIG_IGN);srand(time(nullptr));for(int i = 0; i < 10; i++){pid_t id = fork();if(id == 0){while(true){cout << "I am child process: " << getpid() << ", ppid: " << getppid() << endl;sleep(10);break;}cout << "child quit...!!!" << endl;exit(0);}sleep(rand() % 5 + 3);}//fatherwhile(true){cout << "I am father process: " << getpid() << endl;sleep(1);}return 0;
}

运行结果如下,可以看到是没有僵尸进程的

image-20240127214707488

这里需要注意的是,默认是SIG_DFL,它的动作是忽略。和SIG_IGN是不一样的!!!

这篇关于【Linux】第三十九站:可重入函数、volatile、SIGCHLD信号的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/657561

相关文章

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Linux云服务器手动配置DNS的方法步骤

《Linux云服务器手动配置DNS的方法步骤》在Linux云服务器上手动配置DNS(域名系统)是确保服务器能够正常解析域名的重要步骤,以下是详细的配置方法,包括系统文件的修改和常见问题的解决方案,需要... 目录1. 为什么需要手动配置 DNS?2. 手动配置 DNS 的方法方法 1:修改 /etc/res

Linux创建服务使用systemctl管理详解

《Linux创建服务使用systemctl管理详解》文章指导在Linux中创建systemd服务,设置文件权限为所有者读写、其他只读,重新加载配置,启动服务并检查状态,确保服务正常运行,关键步骤包括权... 目录创建服务 /usr/lib/systemd/system/设置服务文件权限:所有者读写js,其他

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

linux系统中java的cacerts的优先级详解

《linux系统中java的cacerts的优先级详解》文章讲解了Java信任库(cacerts)的优先级与管理方式,指出JDK自带的cacerts默认优先级更高,系统级cacerts需手动同步或显式... 目录Java 默认使用哪个?如何检查当前使用的信任库?简要了解Java的信任库总结了解 Java 信

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数