EViews | 基础操作 备战下周机考

2024-01-29 05:59

本文主要是介绍EViews | 基础操作 备战下周机考,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、创建工作文件

1、非时间序列数据

2、时间序列数据

二、导入数据

1、导入数据

2、保存数据组合或方程结果

三、估计回归模型

1、估计回归模型

2、回归结果名词解读

四、检验模型设定错误

1、检验是否遗漏变量

2-1、检验是否加入了不相干变量

2-2、惩罚新增变量

3、修改函数形式:生成新变量

五、描述性统计分析

1、按组打开

2、查看样本均值

3、样等性检验

六、多重共线性的检验

1、相关系数检验

2、VIF 膨胀因子检验

七、异方差的检验和补救

1、图解法(检验)

2、White 检验

3、White 调整法(补救)

八、序列相关性的检验和补救

1、DW 值(检验)

2、LM (BG) 检验

3、GLS 法(补救)

4、Newey-West 法(补救)

九、虚拟因变量

1、Logit 模型

2、Probit 模型


本文只是介绍如何使用 EViews,不包含任何的回归结果分析。

一、创建工作文件

1、非时间序列数据

  1. 选择数据类型
  2. 填写样本数量

2、时间序列数据

  1. 选择数据类型
  2. 填写开始年份和截止年份

二、导入数据

EViews 自带数据:

  • c 是截距项
  • resid 是残差

1、导入数据

假设这是我们需要导入的数据:

在 EViews 中输入命令:

  • y 对应税收 Y(名称自取,不一定非得是 y!)
  • x 对应 GDP X(名称自取,不一定非得是 x!)
data y x

得到如下弹框:

将数据复制粘贴进去,Word 或 Excel 都支持对框选的数据进行复制粘贴:

选中第一个框,直接 Ctrl+v,剩下的数据同理:

2、保存数据组合或方程结果

不管是保存数据组合还是保持方程结果,都是点这个 “name”:

至此你导入的数据和保存的数据组合如下图所示:

三、估计回归模型

第一节用的数据太简单了,不方便展示,因此改用如下数据:

  • 被解释变量:大学图书馆的藏书量(VOL)
  • 解释变量:大学学生人数(STU)、大学教职工人数(FAC)、本科录取分数线(SAT)

1、估计回归模型

输入以下命令:

  • ls 是指线性回归
  • 必须以 c 间隔被解释变量和解释变量
  • 解释变量之间没有先后顺序要求
ls vol c stu fac sat

得到回归模型:

2、回归结果名词解读

第三个红框,从左到右依次是:

  • 参数估计值
  • 标准差
  • t 统计量
  • p 值

常用统计量,从上到下依次是:

  • 拟合系数 R^2
  • 调整后的拟合系数 R一把^2
  • F 统计量
  • p 值

四、检验模型设定错误

三大模型设定错误:

  • 遗漏变量
  • 加入了不相干变量
  • 函数形式错误

1、检验是否遗漏变量

假设我们不小心遗漏了变量 sat,如下:

ls vol c stu fac

按照下图所示点击相应选项检验是否遗漏变量:

输入 sat,因为我们认为它可能是遗漏的变量:

看这三个检验结果即可,它们都一致认为 sat 是遗漏变量:

2-1、检验是否加入了不相干变量

当前解释变量为 stu、fac、sat,检验 stu 是否是不相干变量:

看这三个检验结果即可,它们都一致认为 stu 是不相干变量:

2-2、惩罚新增变量

  • 赤池信息准则(AIC)
  • 施瓦茨信息准则(SC)

用于在新增变量前的模型和新增变量后的模型之间比较,两个的值越低越好:

3、修改函数形式:生成新变量

假设我们需要把原模型变成双对数形式,那么就需要对每个变量取对数。在 EViews 中的实现方式就是生成新的变量,利用新变量重新做一次回归。

  • genr 是生成新变量的指令
  • lnvol 是新变量的名称
  • log() 是函数
  • vol 是原变量
genr lnvol=log(vol)
genr lntot=log(tot)
genr lnsat=log(sat)

再利用新变量做回归:

ls lnvol c lntot lnsat

五、描述性统计分析

1、按组打开

ctrl+鼠标左键,依次点击我们需要的数据,选好后点击右键:

数据在组中的排列顺序=鼠标选择的顺序:

2、查看样本均值

结果如下图所示:

3、样等性检验

检验不同样本的均值是否存在显著差异

选择均值 mean:

看这两个结果即可,表明不同样本的均值没有显著差异:

老师的 EViews 在 F 检验上面还有两种 t 检验,不知道为什么到我这版就没了。

六、多重共线性的检验

1、相关系数检验

将所需数据按组打开,并选择协方差分析:

这里改选相关系数,不要选协方差:

相关系数矩阵都是对称矩阵,所以可以只看主对角线下面的内容:

2、VIF 膨胀因子检验

VIF 是在回归方程结果页做的,不是按组打开数据那里:

只需要看第三列结果,VIF > 5 就认为存在多重共线性:

这里 STU 和 FAC 的 VIF 都大于 5,只有 SAT 置身事外,所以肯定是 STU 和 FAC 之间存在多重共线性。

七、异方差的检验和补救

1、图解法(检验)

将一个解释变量和 resid 按组打开,先选解释变量后选 resid,否则 x 和 y 轴颠倒了:

选择散点图:

可以看出残差的分布随 SAT 的增大而增大了,因此可能存在异方差:

2、White 检验

White 检验是在回归方程结果页做的,不是按组打开数据那里: 

选择 White 检验,勾选框可以选择要不要交叉项:

White 检验的统计量是 nR^2,可以看出模型不存在异方差:

所以图解法不靠谱啊……

3、White 调整法(补救)

White 调整法只会修正标准差,不会影响到参数估计值:

八、序列相关性的检验和补救

1、DW 值(检验)

DW 统计量值是给你算出来了,但是要自己查表去看到底是不是序列相关:

2、LM (BG) 检验

DW 只能检验一阶,我们 LM 至少要检验个二阶:

结果是既没有一阶序列相关性,也没有二阶序列相关性:

3、GLS 法(补救)

引入解释变量 AR(m),表示随机误差项 ε_t 的 m 阶滞后项 ε_(t-m):

ls vol c stu fac sat ar(1) ar(2)

两个滞后项的参数估计值不显著异于 0,因此不存在序列相关性;否则,标准差的值将得到修正,STU、FAC、SAT 的参数估计值也会改变。正因为原模型不存在序列相关性,所以修正前后的参数估计值不变,DW 值几乎也没有变:

4、Newey-West 法(补救)

NW 调整法只会修正标准差,不会影响到参数估计值:

九、虚拟因变量

1、Logit 模型

和 OLS 统计检验的三大区别:

  • 参数估计值的显著性:t 检验 << z 检验
  • 模型的拟合程度:R^2 << R^2_McF
  • 模型的总体显著性:F 检验 << LR 检验

2、Probit 模型

类比 Logit 模型,就只是勾选的框框不同。

这篇关于EViews | 基础操作 备战下周机考的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/655932

相关文章

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We