毕业设计选题:基于深度学习狗狗品种识别系统 人工智能 机器学习 python 目标检测

本文主要是介绍毕业设计选题:基于深度学习狗狗品种识别系统 人工智能 机器学习 python 目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

设计思路

一、课题背景与意义

二、算法理论原理

2.1 卷积神经网络

2.2 YOLOv5模型

三、检测的实现

3.1 数据集

3.2 实验环境搭建

3.3 实验及结果分析

实现效果图样例

最后


前言

       📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学来说是充满挑战。为帮助大家顺利通过和节省时间与精力投入到更重要的就业和考试中去,学长分享优质的选题经验和毕设项目与技术思路。

        🚀对毕设有任何疑问都可以问学长哦!

         选题指导:

        最新最全计算机专业毕设选题精选推荐汇总

        大家好,这里是海浪学长毕设专题,本次分享的课题是

        🎯基于深度学习狗狗品种识别系统

设计思路

一、课题背景与意义

        狗狗种类识别一直是计算机视觉领域的重要研究方向。传统的狗狗种类识别方法通常依赖于手工设计的特征和分类器,存在识别准确率低和对多样性狗狗品种的适应性差的问题。而基于深度学习的狗狗种类识别系统的出现,能够通过深度神经网络自动学习图像特征,极大地提高了识别准确性和泛化能力。

二、算法理论原理

2.1 卷积神经网络

        卷积神经网络(CNN)是深度学习中最重要的结构之一。与传统的全连接神经网络相比,CNN利用卷积操作来学习数据中的高阶特征,特别适用于处理具有结构和空间相关性的数据,因此在图像中的物体识别方面表现出色。

        CNN的核心思想是通过卷积层进行特征提取和特征映射,然后使用池化层进行空间降采样,最后通过全连接层进行分类或回归。卷积层通过卷积操作在局部感受野上提取特征,并共享权重以捕捉数据的局部结构。这种权重共享的方式大大减少了模型的参数量,使得CNN具有较少的模型复杂度。

毕业设计选题:基于深度学习狗狗品种识别系统 人工智能 机器学习 python 目标检测

        卷积层是CNN的核心组成部分,用于对输入图像进行特征提取。它通过将输入图像转化为矩阵,并与滤波器(也称为卷积核)进行点积操作,生成特征映射。卷积层将输入图像分解为像素值组成的矩阵,在矩阵上滑动卷积核。卷积核是一个小的矩阵,包含了一组权重参数。在每个位置,卷积核的值与其所在窗口中的像素值相乘,并将结果相加,得到一个单一的数值。这个数值表示卷积核在该位置上的响应或特征强度。

毕业设计选题:基于深度学习狗狗品种识别系统 人工智能 机器学习 python 目标检测

        当输入的图片为彩色图像时,每个像素点包含RGB三个通道的信息。为了对彩色图像进行卷积操作,需要使用多维的卷积核。对于彩色图像的卷积操作,需要使用多维的卷积核,对输入图像的RGB三个通道分别进行卷积操作,并将各通道的卷积结果叠加起来得到最终的特征映射。这样可以保留并综合考虑图像在不同通道上的特征信息,提供更丰富和准确的特征表示。

毕业设计选题:基于深度学习狗狗品种识别系统 人工智能 机器学习 python 目标检测

2.2 YOLOv5模型

        YOLOv5s在基于深度学习的狗狗分类系统中的优势主要体现在其快速的实时性能、准确的目标检测能力、多目标检测的支持以及轻量级的模型结构,使其成为高效、精确且适用于资源受限设备的解决方案。YOLOv5s采用了轻量级的网络结构,具有较快的推理速度,可以在实时或近实时的情况下对图像中的狗狗进行分类。这对于需要快速响应的应用场景非常重要。能够同时检测和分类图像中的多个狗狗实例,而不需要额外的后处理步骤。这使得它适用于具有多个目标的场景,例如一张图像中有多只狗狗。

毕业设计选题:基于深度学习狗狗品种识别系统 人工智能 机器学习 python 目标检测

        多尺度的特征融合方式对于检测和分割网络的效果提升非常明显。浅层特征具有更丰富的像素点信息,如纹理、边缘和颜色等,虽然语义信息较弱,但有助于网络获取更多的细节信息。而深层特征则包含较强的语义信息,能够提供更抽象的特征表示。通过将不同层次的特征融合在一起,可以获得更丰富、更全面的特征信息,使网络能够同时捕捉到细节和语义,从而提高检测和分割任务的准确性和鲁棒性。这种多尺度特征融合的策略有助于充分利用网络的层次结构,提升对图像内容的理解和表示能力,进一步推动计算机视觉任务的发展和性能提升。

毕业设计选题:基于深度学习狗狗品种识别系统 人工智能 机器学习 python 目标检测

        YOLO系列算法通过将图像划分为不同大小的网格来检测目标物体,其中每个网格的尺寸决定了检测到的物体的大小。通过这种不同尺寸的特征图结合,YOLO算法能够同时检测不同尺度的目标物体。在图中,黄色框表示真实目标框,蓝色框表示生成的三个预测框。这种多尺度的特征图设计使得YOLO算法能够在不同尺度的目标物体上具有较好的检测效果,并提高了算法的鲁棒性和适应性。

毕业设计选题:基于深度学习狗狗品种识别系统 人工智能 机器学习 python 目标检测

三、检测的实现

3.1 数据集

        由于网络上缺乏合适的现有数据集,我决定亲自收集照片并创建一个全新的数据集,用于基于深度学习的犬类识别系统的研究。这个数据集包含了各种真实场景中的狗狗照片,涵盖了不同品种、姿态和环境条件下的狗狗图像。通过现场拍摄,我能够捕捉到真实且多样化的狗狗样本,为我的研究提供更准确、可靠的数据。这个自制的数据集将为犬类识别系统的研究和发展提供有力的支持,为改善狗狗识别的准确性和鲁棒性做出积极贡献。

数据扩充:

  • 镜像翻转:通过cv2.flip函数对图像进行水平翻转。
  • 旋转:使用cv2.getRotationMatrix2D函数获取旋转矩阵,然后使用cv2.warpAffine函数对图像进行旋转。
  • 平移:通过定义平移矩阵,使用cv2.warpAffine函数对图像进行平移。
  • 缩放:使用cv2.resize函数对图像进行缩放。
import cv2
import numpy as np# 加载图像
image = cv2.imread('dog_image.jpg')# 镜像翻转
flipped_image = cv2.flip(image, 1)  # 参数1表示水平翻转# 旋转
angle = 45
rows, cols = image.shape[:2]
rotation_matrix = cv2.getRotationMatrix2D((cols/2, rows/2), angle, 1)
rotated_image = cv2.warpAffine(image, rotation_matrix, (cols, rows))# 平移
shift_x, shift_y = 50, 70
translation_matrix = np.float32([[1, 0, shift_x], [0, 1, shift_y]])
translated_image = cv2.warpAffine(image, translation_matrix, (cols, rows))# 缩放
scale_percent = 150  # 增加50%的尺寸
new_width = int(image.shape[1] * scale_percent / 100)
new_height = int(image.shape[0] * scale_percent / 100)
resized_image = cv2.resize(image, (new_width, new_height))# 显示扩充后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Flipped Image', flipped_image)
cv2.imshow('Rotated Image', rotated_image)
cv2.imshow('Translated Image', translated_image)
cv2.imshow('Resized Image', resized_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

        数据标注(Data Annotation)是为数据集中的样本添加标签或注释,以指示样本的类别、位置或其他相关信息。在犬类识别系统中,数据标注可以包括对每个图像进行狗狗的类别标签(如品种)、边界框标注(用于定位狗狗的位置)等。数据标注通常需要人工进行,可以通过众包或专业的标注服务来完成。准确的数据标注对于训练深度学习模型非常重要,因为标注质量直接影响模型的性能和准确度。

# 加载图像
image = cv2.imread('dog_image.jpg')# 定义边界框的坐标 (x_min, y_min, x_max, y_max)
bbox = (100, 200, 400, 500)# 在图像上绘制边界框
cv2.rectangle(image, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)# 显示带有边界框的图像
cv2.imshow('Dog Image with Bounding Box', image)
cv2.waitKey(0)
将犬种数据集按照3:1:1的比例划分为训练集、验证集和测试集。

 相关代码示例:

# 设置数据集路径
dataset_path = 'path/to/dataset'# 设置划分后数据集保存路径
train_path = 'path/to/train'
val_path = 'path/to/validation'
test_path = 'path/to/test'# 设置划分比例
train_ratio = 0.6
val_ratio = 0.2
test_ratio = 0.2# 获取所有图像文件路径
image_files = []
for root, dirs, files in os.walk(dataset_path):for file in files:if file.endswith('.jpg'):image_files.append(os.path.join(root, file))# 打乱图像文件列表顺序
random.shuffle(image_files)# 计算划分后的样本数量
total_images = len(image_files)
train_size = int(total_images * train_ratio)
val_size = int(total_images * val_ratio)
test_size = int(total_images * test_ratio)# 创建保存划分后数据集的文件夹
os.makedirs(train_path, exist_ok=True)
os.makedirs(val_path, exist_ok=True)
os.makedirs(test_path, exist_ok=True)# 复制图像文件到训练集文件夹
for i in range(train_size):shutil.copy(image_files[i], train_path)# 复制图像文件到验证集文件夹
for i in range(train_size, train_size + val_size):shutil.copy(image_files[i], val_path)# 复制图像文件到测试集文件夹
for i in range(train_size + val_size, train_size + val_size + test_size):shutil.copy(image_files[i], test_path)print("数据集划分完成!")

3.2 实验环境搭建

3.3 实验及结果分析

        采用了四个评价指标来评估检测方法的性能,包括精确率(Precision)、召回率(Recall)、平均精度(mAP)和每秒处理帧数(FPS)。为了提高网络模型的学习效率并节省模型训练时间,本文采用了迁移学习的策略。提出的改进策略被添加到初始化参数之后的YOLOv5s模型上。最后,使用自己构建的数据集对模型进行训练,以获得性能更优秀的网络模型。通过这个迁移学习的策略,能够充分利用已有模型的知识,从而加速模型的收敛并提高检测性能。

        在使用的数据集上,当迭代次数达到500次时,观察到模型的震荡幅度减小,mAP和损失函数的曲线趋于平稳,表明网络已经达到了收敛状态。当批量大小(batch size)选择为8时,模型的准确率达到最高点,网络达到最优状态。因此,使用批量大小为8的配置能够获得最佳的性能表现。

        改进后的模型在犬种图像的检测质量和检测完整性方面都有明显提高。mAP的提高达到了15%,表明模型的整体检测效果得到了显著改善,表现出更好的性能。

相关代码示例:

import torch
import torchvision.transforms as transforms
from PIL import Image
from pathlib import Path# 加载YOLO模型
model = torch.hub.load('ultralytics/yolov5', 'yolov5s')# 设置图像转换
transform = transforms.Compose([transforms.Resize((640, 640)),  # 调整图像大小transforms.ToTensor()  # 转换为张量
])# 设置类别标签
class_labels = ['dog']# 加载图像
image_path = 'path/to/image.jpg'
image = Image.open(image_path).convert('RGB')# 进行图像转换和模型推理
input_image = transform(image).unsqueeze(0)
results = model(input_image)# 获取预测结果
predictions = results.pandas().xyxy[0]# 输出预测结果
for _, prediction in predictions.iterrows():label = class_labels[int(prediction['class'])]confidence = prediction['confidence']bbox = prediction[['xmin', 'ymin', 'xmax', 'ymax']].values.tolist()print(f'类别: {label}, 置信度: {confidence}, 边界框: {bbox}')

创作不易,欢迎点赞、关注、收藏。

毕设帮助,疑难解答,欢迎打扰!

最后

这篇关于毕业设计选题:基于深度学习狗狗品种识别系统 人工智能 机器学习 python 目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/655672

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装