【归并排序】【图论】【动态规划】【 深度游戏搜索】1569将子数组重新排序得到同一个二叉搜索树的方案数

本文主要是介绍【归并排序】【图论】【动态规划】【 深度游戏搜索】1569将子数组重新排序得到同一个二叉搜索树的方案数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文涉及知识点

动态规划汇总
图论 深度游戏搜索 归并排序 组合

LeetCoce1569将子数组重新排序得到同一个二叉搜索树的方案数

给你一个数组 nums 表示 1 到 n 的一个排列。我们按照元素在 nums 中的顺序依次插入一个初始为空的二叉搜索树(BST)。请你统计将 nums 重新排序后,统计满足如下条件的方案数:重排后得到的二叉搜索树与 nums 原本数字顺序得到的二叉搜索树相同。
比方说,给你 nums = [2,1,3],我们得到一棵 2 为根,1 为左孩子,3 为右孩子的树。数组 [2,3,1] 也能得到相同的 BST,但 [3,2,1] 会得到一棵不同的 BST 。
请你返回重排 nums 后,与原数组 nums 得到相同二叉搜索树的方案数。
由于答案可能会很大,请将结果对 10^9 + 7 取余数。
示例 1:
输入:nums = [2,1,3]
输出:1
解释:我们将 nums 重排, [2,3,1] 能得到相同的 BST 。没有其他得到相同 BST 的方案了。
示例 2:
输入:nums = [3,4,5,1,2]
输出:5
解释:下面 5 个数组会得到相同的 BST:
[3,1,2,4,5]
[3,1,4,2,5]
[3,1,4,5,2]
[3,4,1,2,5]
[3,4,1,5,2]
示例 3:
输入:nums = [1,2,3]
输出:0
解释:没有别的排列顺序能得到相同的 BST 。
提示:
1 <= nums.length <= 1000
1 <= nums[i] <= nums.length
nums 中所有数 互不相同 。

归并排序

原以为必须用归并排序的思想,其实可以不用归并排序。

原理

对每棵树(子树),只讨论左子树和右子树之间的顺序,不讨论子树内部的顺序。
a,根节点必定是第一个。
b,混略内部顺序后,左子树的节点完全相同,假定其为ln个;右子树的节点也相同,假定其为rn个。就是组合 C m + n n \Large C_{m+n}^n Cm+nn
DFS 各子树 的结果相乘。

动态规划的状态表示

每个子树的范围是确定,比如:根节点的范围为[1,n],左子树[1,nums[0]-1] 右子树[nums[0],n]。每根子树,需要三个子状态:最小值(iMin),最大值(iMax),根节点的值(nums[iRoot])。 由于1到n,都出现且只出现一次,所以此子树的节点数为:最大值-最小值+1。

动态规划的转移方程

左树:iMin,nums[iRoot]-1, nums(iRoot…]中第一个在左树范围的小标。
右树:,nums[iRoot]+1,iMax,nums(iRoot…]中第一个在右树范围的小标。

动态规划的填表顺

深度优先,从根节点开始。

动态规划的返回值

dfs(1,n,0)-1。

代码

核心代码

template<int MOD = 1000000007>
class C1097Int
{
public:C1097Int(long long llData = 0) :m_iData(llData% MOD){}C1097Int  operator+(const C1097Int& o)const{return C1097Int(((long long)m_iData + o.m_iData) % MOD);}C1097Int& operator+=(const C1097Int& o){m_iData = ((long long)m_iData + o.m_iData) % MOD;return *this;}C1097Int& operator-=(const C1097Int& o){m_iData = (m_iData + MOD - o.m_iData) % MOD;return *this;}C1097Int  operator-(const C1097Int& o){return C1097Int((m_iData + MOD - o.m_iData) % MOD);}C1097Int  operator*(const C1097Int& o)const{return((long long)m_iData * o.m_iData) % MOD;}C1097Int& operator*=(const C1097Int& o){m_iData = ((long long)m_iData * o.m_iData) % MOD;return *this;}bool operator<(const C1097Int& o)const{return m_iData < o.m_iData;}C1097Int pow(long long n)const{C1097Int iRet = 1, iCur = *this;while (n){if (n & 1){iRet *= iCur;}iCur *= iCur;n >>= 1;}return iRet;}C1097Int PowNegative1()const{return pow(MOD - 2);}int ToInt()const{return m_iData;}
private:int m_iData = 0;;
};template<class Result = C1097Int<> >
class CCombination
{
public:CCombination(){m_v.assign(1, vector<Result>(1,1));}Result Get(int sel, int total){while (m_v.size() <= total){int iSize = m_v.size();m_v.emplace_back(iSize + 1, 1);for (int i = 1; i < iSize; i++){m_v[iSize][i] = m_v[iSize - 1][i] + m_v[iSize - 1][i - 1];}}return m_v[total][sel];}
protected:vector<vector<Result>> m_v;
};class Solution {
public:int numOfWays(vector<int>& nums) {m_nums = nums;return (DFS(1, nums.size(), 0) - 1).ToInt();}C1097Int<> DFS(int iMin, int iMax, int iRoot){int iLeftRoot = -1, iRightRoot = -1;for (int i = (int)m_nums.size()-1; i > iRoot; i--){if ((m_nums[i] < m_nums[iRoot])&&(m_nums[i] >= iMin )){iLeftRoot = i;}if ((m_nums[i] > m_nums[iRoot])&& (m_nums[i] <= iMax)){iRightRoot = i;}}C1097Int<> biRet = m_com.Get(m_nums[iRoot]-iMin,iMax-iMin);if (-1 != iLeftRoot){biRet *= DFS(iMin, m_nums[iRoot] - 1, iLeftRoot);}if (-1 != iRightRoot){biRet *= DFS(m_nums[iRoot] + 1,iMax, iRightRoot);}return biRet;}vector<int> m_nums;CCombination<> m_com;
};

2023年6月

class Solution {
public:
int numOfWays(vector& nums) {
m_vFact.emplace_back(1);
for (int i = 1; i < nums.size(); i++)
{
m_vFact.emplace_back(m_vFact.back()*i);
}
for (const auto& i : m_vFact )
{
m_vRevFact.emplace_back(i.PowNegative1());
}
return (Rev(nums) - 1).ToInt();
}
C1097Int<> Rev(vector& nums)
{
if (0 == nums.size())
{
return 1;
}
vector vLeft, vRight;
for (int i = 1; i < nums.size(); i++)
{
const int& n = nums[i];
if (n < nums[0])
{
vLeft.emplace_back(n);
}
else
{
vRight.emplace_back(n);
}
}
C1097Int<> iRet = m_vFact[vLeft.size() + vRight.size()] * m_vRevFact[vLeft.size()] * m_vRevFact[vRight.size()];
return iRet * Rev(vLeft) * Rev(vRight);
}
vector<C1097Int<>> m_vFact, m_vRevFact;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【归并排序】【图论】【动态规划】【 深度游戏搜索】1569将子数组重新排序得到同一个二叉搜索树的方案数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/654964

相关文章

CSS Anchor Positioning重新定义锚点定位的时代来临(最新推荐)

《CSSAnchorPositioning重新定义锚点定位的时代来临(最新推荐)》CSSAnchorPositioning是一项仍在草案中的新特性,由Chrome125开始提供原生支持需... 目录 css Anchor Positioning:重新定义「锚定定位」的时代来了! 什么是 Anchor Pos

HTML5 搜索框Search Box详解

《HTML5搜索框SearchBox详解》HTML5的搜索框是一个强大的工具,能够有效提升用户体验,通过结合自动补全功能和适当的样式,可以创建出既美观又实用的搜索界面,这篇文章给大家介绍HTML5... html5 搜索框(Search Box)详解搜索框是一个用于输入查询内容的控件,通常用于网站或应用程

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

SpringBoot服务获取Pod当前IP的两种方案

《SpringBoot服务获取Pod当前IP的两种方案》在Kubernetes集群中,SpringBoot服务获取Pod当前IP的方案主要有两种,通过环境变量注入或通过Java代码动态获取网络接口IP... 目录方案一:通过 Kubernetes Downward API 注入环境变量原理步骤方案二:通过

Springboot3+将ID转为JSON字符串的详细配置方案

《Springboot3+将ID转为JSON字符串的详细配置方案》:本文主要介绍纯后端实现Long/BigIntegerID转为JSON字符串的详细配置方案,s基于SpringBoot3+和Spr... 目录1. 添加依赖2. 全局 Jackson 配置3. 精准控制(可选)4. OpenAPI (Spri

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

在Java中将XLS转换为XLSX的实现方案

《在Java中将XLS转换为XLSX的实现方案》在本文中,我们将探讨传统ExcelXLS格式与现代XLSX格式的结构差异,并为Java开发者提供转换方案,通过了解底层原理、性能优势及实用工具,您将掌握... 目录为什么升级XLS到XLSX值得投入?实际转换过程解析推荐技术方案对比Apache POI实现编程

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷